References

BRAIN MRI IMAGES FOR BRAIN TUMOR DETECTION USING DEEP LEARNING


[1] M. K. Abd-Ellah, A. I. Awad, A. A. M. Khalaf and H. F. A. Hamed, A review on brain tumor diagnosis from MRI images: Practical implications, key achievements, and lessons learned, Magnetic Resonance Imaging 61 (2019), 300-318.
DOI: https://doi.org/10.1016/j.mri.2019.05.028

[2] G. Afendras and M. Markatou, Optimality of training/test size and resampling effectiveness in cross-validation, Journal of Statistical Planning and Inference 199 (2019), 286-301.
DOI: https://doi.org/10.1016/j.jspi.2018.07.005

[3] S. Albawi, T. A. Mohammed and S. Al-Zawi, Understanding of a convolutional neural network, Paper presented at the 2017 International Conference on Engineering and Technology (ICET) (2017).
DOI: https://doi.org/10.1109/ICEngTechnol.2017.8308186

[4] N. Chakrabarty, Brain MRI images for brain tumor detection, Kaggle. In. (2019).

[5] R. Chauhan, K. K. Ghanshala and R. C. Joshi, Convolutional neural network (CNN) for image detection and recognition, Paper presented at the 2018 First International Conference on Secure Cyber Computing and Communication (ICSCCC) (2018).
DOI: https://doi.org/10.1109/ICSCCC.2018.8703316

[6] Y. Chen, E. K. Garcia, M. R. Gupta, A. Rahimi and L. Cazzanti, Similarity-based classification: Concepts and algorithms, Journal of Machine Learning Research 10(3) (2009), 747-776.

[7] V. Consonni, D. Ballabio and R. Todeschini, Evaluation of model predictive ability by external validation techniques, Journal of Chemometrics 24(3-4) (2010), 194-201.
DOI: https://doi.org/10.1002/cem.1290

[8] S. J. S. Gardezi, M. Awais, I. Faye and F. Meriaudeau, Mammogram classification using deep learning features, Paper presented at the 2017 IEEE International Conference on Signal and Image Processing Applications (ICSIPA) (2017).
DOI: https://doi.org/10.1109/ICSIPA.2017.8120660

[9] Z. Li, F. Liu, W. Yang, S. Peng and J. Zhou, A survey of convolutional neural networks: Analysis, applications, and prospects, IEEE Transactions on Neural Networks and Learning Systems 33(12) (2021), 6999-7019.
DOI: https://doi.org/10.1109/TNNLS.2021.3084827

[10] J. Liang, Confusion Matrix: Machine Learning 3(4) (2022).

[11] J. Liu, Y. Pan, M. Li, Z. Chen, L. Tang, C. Lu and J. Wang, Applications of deep learning to MRI images: A survey, Big Data Mining and Analytics 1(1) (2018), 1-18.
DOI: https://doi.org/10.26599/BDMA.2018.9020001

[12] U. K. Lopes and J. F. Valiati, Pre-trained convolutional neural networks as feature extractors for tuberculosis detection, Computers in Biology and Medicine 89 (2017), 135-143.
DOI: https://doi.org/10.1016/j.compbiomed.2017.08.001

[13] M. Masud, M. S. Hossain, H. Alhumyani, S. S. Alshamrani, O. Cheikhrouhou, S. Ibrahim, Ghulam Muhammad, Amr E. Eldin Rashed and B. B. Gupta, Pre-trained convolutional neural networks for breast cancer detection using ultrasound images, ACM Transactions on Internet Technology 21(4) (2021), 1-17.
DOI: https://doi.org/10.1145/3418355

[14] H. Mohsen, E.-S. A. El-Dahshan, E.-S. M. El-Horbaty and A.-B. M. Salem, Classification using deep learning neural networks for brain tumors 3(1) (2018), 68-71.
DOI: https://doi.org/10.1016/j.fcij.2017.12.001

[15] M. A. Naser and M. J. Deen, Brain tumor segmentation and grading of lower-grade glioma using deep learning in MRI images, Computers in Biology and Medicine 121 (2020), 103758.
DOI: https://doi.org/10.1016/j.compbiomed.2020.103758

[16] J.-O. Palacio-Niño and F. Berzal, Evaluation metrics for unsupervised learning algorithms (2019).

[17] J. S. Paul, A. J. Plassard, B. A. Landman and D. Fabbri, Deep learning for brain tumor classification, Paper presented at the Medical Imaging 2017: Biomedical Applications in Molecular, Structural, and Functional Imaging (2017)
DOI: https://doi.org/10.1117/12.2254195

[18] I. Rish, An empirical study of the naive Bayes classifier, Paper presented at the IJCAI 2001 Workshop on Empirical Methods in Artificial Intelligence (2001).

[19] K. Simonyan and A. J. Zisserman, Very deep convolutional networks for large-scale image recognition, (2014).

[20] S. Suthaharan, Support vector machine, In: Machine Learning Models and Algorithms for Big Data Classification (2016), 207-235.
DOI: https://doi.org/10.1007/978-1-4899-7641-3_9

[21] Gopal S. Tandel, Mainak Biswas, Omprakash G. Kakde, Ashish Tiwari, Harman S. Suri, Monica Turk, John R. Laird, Christopher K. Asare, Annabel A. Ankrah, N. N. Khanna, B. K. Madhusudhan, Luca Saba and Jasjit S. Suri, A review on a deep learning perspective in brain cancer classification, Cancers 11(1) (2019); Article 111.
DOI: https://doi.org/10.3390/cancers11010111

[22] S. Visa, B. Ramsay, A. L. Ralescu and E. Van Der Knaap, Confusion matrix-based feature selection, Proceedings of the 22nd Midwest Artificial Intelligence and Cognitive Science Conference 710(1) (2011), 120-127.

[23] J. Wu, Introduction to convolutional neural networks 5(23) (2017), 495.