References

A SPARSE REPRESENTATION METHOD BASED ON QUATERNION FOR MULTI-FOCUS IMAGE FUSION


[1] G. Piella, A general framework for multiresolution image fusion: From pixels to regions, Information Fusion 4(4) (2003), 259-280.
DOI: https://doi.org/10.1016/S1566-2535(03)00046-0

[2] O. Rockinger, Image sequence fusion using a shift-invariant wavelet transform, Proceedings of International Conference on Image Processing, Washington DC, USA: IEEE Computer Society, (1997), 288-291.
DOI: https://doi.org/10.1109/ICIP.1997.632093

[3] L. A. Ray and R. R. Adhami, Dual tree discrete wavelet transform with application to image fusion, Proceedings of the 38th Southeastern on System Theory, Huntsville, Albania: IEEE Computer Society (2006), 430-433.
DOI: https://doi.org/10.1109/SSST.2006.1619105

[4] S. Ioannidou and V. Karathanassi, Investigation of the dual-tree complex and shift-invariant discrete wavelet transforms on quickbird image fusion, IEEE Geoscience and Remote Sensing Letters 4(1) (2007), 166-170.
DOI: https://doi.org/10.1109/LGRS.2006.887056

[5] F. Nencini, A. Garzelli, S. Baronti and L. Alparone, Remote sensing image fusion using the curvelet transform, Information Fusion 8(2) (2007), 143-156.
DOI: https://doi.org/10.1016/j.inffus.2006.02.001

[6] M. N. Do and M. Vetterli, The contourlet transform: An efficient directional multiresolution image representation, IEEE Transactions on Image Processing 14(12) (2005), 2091-2106.
DOI: https://doi.org/10.1109/TIP.2005.859376

[7] A. L. Da Cunha, J. P. Zhou and M. N. Do, The nonsubsampled contourlet transform: Theory, design, and applications, IEEE Transactions on Image Processing 15(10) (2006), 3089-3101.
DOI: https://doi.org/10.1109/TIP.2006.877507

[8] B. Yang, S. T. Li and F. M. Sun, Image fusion using nonsubsampled contourlet transform, Proceedings of the 4th International Conference on Image and Graphics, Chengdu, China: IEEE Computer Society (2007), 719-724.
DOI: https://doi.org/10.1109/ICIG.2007.124

[9] Q. Zhang and B. L. Guo, Multifocus image fusion using the nonsubsampled contourlet transform, Signal Processing 89(7) (2009), 1334-1346.
DOI: https://doi.org/10.1016/j.sigpro.2009.01.012

[10] Shutao Li and Bin Yang, Multifocus image fusion by combining curvelet and wavelet transform, Pattern Recognition Letters 29(9) (2008), 1295-1301.
DOI: https://doi.org/10.1016/j.patrec.2008.02.002

[11] W. Huang and Z. Jing, Evaluation of focus measures in multi-focus image fusion, Pattern Recognition Letters 28(4) (2007), 493-500.
DOI: https://doi.org/10.1016/j.patrec.2006.09.005

[12] V. Aslantas and R. Kurban, Fusion of multi-focus images using differential evolution algorithm, Expert Systems with Applications 37(12) (2010), 8861-8870.
DOI: https://doi.org/10.1016/j.eswa.2010.06.011

[13] I. De and B. Chanda, Multi-focus image fusion using a morphology-based focus measure in a quad-tree structure, Information Fusion 14(2) (2013), 136-146.
DOI: https://doi.org/10.1016/j.inffus.2012.01.007

[14] X. Bai, Y. Zhang, F. Zhou and B. Xue, Quadtree-based multi-focus image fusion using a weighted focus-measure, Information Fusion 22 (2015), 105-118.
DOI: https://doi.org/10.1016/j.inffus.2014.05.003

[15] M. Li, W. Cai and Z. Tan, A region-based multi-sensor image fusion scheme using pulse-coupled neural network, Pattern Recognition Letters 27(16) (2006), 1948-1956.
DOI: https://doi.org/10.1016/j.patrec.2006.05.004

[16] S. Li and B. Yang, Multifocus image fusion using region segmentation and spatial frequency, Image and Vision Computing 26(7) (2008), 971-979.
DOI: https://doi.org/10.1016/j.imavis.2007.10.012

[17] S. Li, X. Kang and J. Hu, Image fusion with guided filtering, IEEE Transactions on Image Processing 22(7) (2013), 2864-2875.
DOI: https://doi.org/10.1109/TIP.2013.2244222

[18] Z. Zhou, S. Li and B. Wang, Multi-scale weighted gradient-based fusion for multi-focus images, Information Fusion 20 (2014), 60-72.
DOI: https://doi.org/10.1016/j.inffus.2013.11.005

[19] B. Yang and S. T. Li, Multifocus image fusion and restoration with sparse representation, IEEE Transactions on Instrumentation and Measurement 59(4) (2010), 884-892.
DOI: https://doi.org/10.1109/TIM.2009.2026612

[20] Qiang Zhang and Martin D. Levine, Robust multi-focus image fusion using multi-task sparse representation and spatial context, IEEE Transactions on Image Processing 25(5) (2016), 2045-2058.
DOI: https://doi.org/10.1109/TIP.2016.2524212

[21] Xin Jin, Rencan Nie, Dongming Zhou, Quan Wang and Kangjian He, Multifocus color image fusion based on NSST and PCNN, Journal of Sensors 2 (2016); Article ID 8359602, pp. 1-12.
DOI: https://doi.org/10.1155/2016/8359602

[22] Rui Zeng, Jiasong Wu, Zhuhong Shao, Yang Chen, Beijing Chen, Lotfi Senhadji and Huazhong Shu, Color image classification via quaternion principal component analysis network, Neurocomputing 216 (2016), 416-428.
DOI: https://doi.org/10.1016/j.neucom.2016.08.006

[23] Yi Xu, Licheng Yu, Hongteng Xu, Hao Zhang and Truong Nguyen, Vector sparse representation of color image using quaternion matrix analysis, IEEE Transactions on Image Processing 24(4) (2015), 1315-1329.
DOI: https://doi.org/10.1109/tip.2015.2397314

[24] W. R. Hamilton, On Quaternions, Proceeding of the Royal Irish Academy, 1844.

[25] L. L. Kantor and A. S. Solodovnikov, Hypercomplex Numbers: An Elementary Introduction to Algebras, Springer-Verlag, 1989.

[26] S.-C. Pei and C.-M. Cheng, A novel block truncation coding of color images by using quaternion-moment-preserving principle, IEEE Transactions on Communications 45(5) (1997), 583-595.
DOI: https://doi.org/10.1109/26.592558

[27] Pan Zhu, Lu Liu and Xinglin Zhou, Infrared polarization and intensity image fusion based on bivariate BEMD and sparse representation, Multimedia Tools and Applications 80(3) (2021), 4455-4471.
DOI: https://doi.org/10.1007/s11042-020-09860-z

[28] J. Mairal, M. Elad and G. Sapiro, Sparse representation for color image restoration, IEEE Transactions on Image Processing 17(1) (2008), 53-69.
DOI: https://doi.org/10.1109/TIP.2007.911828

[29] Y. Liu, S. P. Liu and Z. F. Wang, A general framework for image fusion based on multi-scale transform and sparse representation, Information Fusion 24 (2015), 147-164.
DOI: https://doi.org/10.1016/j.inffus.2014.09.004

[30] K. Engan, S. O. Aase and J. H. Husoy, Multi-frame compression: Theory and design, Signal Process 80(10) (2000), 2121-2140.
DOI: https://doi.org/10.1016/S0165-1684(00)00072-4

[31] A. Michal, M. Elad and A. Bruckstein, K-SVD: An algorithm for designing overcomplete dictionaries for sparse representation, IEEE Transactions on Signal Processing 54(11) (2006), 4311-4322.
DOI: https://doi.org/10.1109/TSP.2006.881199

[32] J. Mairal, F. Bach, J. Ponce and G. Sapiro, Online learning for matrix factorization and sparse coding, Journal of Machine Learning Research 11 (2010), 19-60.

[33] S. S. Chen, D. L. Donoho and M. A. Saunders, Atomic decomposition by basis pursuit, SIAM Review 43(1) (2001), 129-159.
DOI: https://doi.org/10.1137/S003614450037906X

[34] I. F. Gorodnitsky and B. D. Rao, Sparse signal reconstruction from limited data using FOCUSS: A re-weighted minimum norm algorithm, IEEE Transactions on Signal Processing 45(3) (1997), 600-616.
DOI: https://doi.org/10.1109/78.558475

[35] S. G. Mallat and Z. Zhang, Matching pursuits with time-frequency dictionaries, IEEE Transactions on Signal Processing 41(12) (1993), 3397-3415.
DOI: https://doi.org/10.1109/78.258082

[36] Y. C. Pati, R. Rezaiifar and P. S. Krishnaprasad, Orthogonal matching pursuit: Recursive function approximation with applications to wavelet decomposition, Proceedings of 27th Asilomar Conference on Signals, Systems and Computers 1 (1993), 40-44.
DOI: https://doi.org/10.1109/ACSSC.1993.342465

[37] B. Yang and S. T. Li, Pixel-level image fusion with simultaneous orthogonal matching pursuit, Information Fusion 13(1) (2012), 10-19.
DOI: https://doi.org/10.1016/j.inffus.2010.04.001

[38] M. Amin-Naji, A. Aghagolzadeh and M. Ezoji, Fully convolutional networks for multi-focus image fusion, 9th International Symposium on Telecommunications (2018), 553-558.
DOI: https://doi.org/10.1109/ISTEL.2018.8660989

[39] Q. Wang, Y. Shen and J. Jin, 19-Performance evaluation of image fusion techniques, Image Fusion: Algorithms and Applications, Great Britain 19 (2008), 469-492.
DOI: https://doi.org/10.1016/B978-0-12-372529-5.00017-2

[40] C. Yang, J. Q. Zhang, X. R. Wang and X. Liu, A novel similarity based quality metric for image fusion, Information Fusion 9(2), (2008), 156-160.
DOI: https://doi.org/10.1016/j.inffus.2006.09.001

[41] Y. Liu, X. Chen, H. Peng and Z. Wang, Multi-focus image fusion with a deep convolutional neural network, Information Fusion 36 (2017), 191-207.
DOI; https://doi.org/10.1016/j.inffus.2016.12.001

[42] Y. Liu, S. Liu and Z. Wang, Multi-focus image fusion with dense SIFT, Information Fusion 23 (2015), 139-155.
DOI: https://doi.org/10.1016/j.inffus.2014.05.004

[43] Y. Chen and R. S. Blum, A new automated quality assessment algorithm for image fusion, Image and Vision Computing 27(10) (2009), 1421-1432.
DOI: https://doi.org/10.1016/j.imavis.2007.12.002

[44] M. Hossny, S. Nahavandi and D. Creighton, Comments on: Information measure for performance of image fusion, Electronics Letters 44(18) (2008), 1066-1067.
DOI: https://doi.org/10.1049/el:20081754

[45] N. Cvejic, C. N. Canagarajah and D. R. Bull, Image fusion metric based on mutual information and Tsallis entropy, Electrons Letters 42(11) (2006), 626-627.
DOI: https://doi.org/10.1049/el:20060693

[46] Y. Zheng, E. A. Essock, B. C. Hansen and A. M. Haun, A new metric based on extended spatial frequency and its application to DWT based fusion algorithms, Information Fusion 8(2) (2007), 177-192.
DOI: https://doi.org/10.1016/j.inffus.2005.04.003