References

ERROR ANALYSIS FOR THE LOCAL ALGORITHM OF THE TWO-LEVEL METHOD IN SPARSE TIME-FREQUENCY ANALYSIS


[1] P. Flandrin, Time-Frequency/Time-Scale Analysis, Academic Press, San Diego, 1999.

[2] S. Mallat, A Wavelet Tour of Signal Processing: The Sparse Way, 3rd Edition, Amsterdam: Elsevier/Academic Press, 2009.

[3] N. E. Huang, Z. Wu and S. R. Long, Hilbert-Huang Transform, 2008.
DOI: https://doi.org/10.4249/scholarpedia.2544

[4] N. E. Huang, Z. Shen, S. R. Long, M. C. Wu, H. H. Shih, Q. Zheng, N. C. Yen, C. C. Tung and H. H. Liu, The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis, Proceedings of the Royal Society, Series A: Mathematical, Physical and Engineering Sciences 454(1971) (1998), 903-995.
DOI: https://doi.org/10.1098/rspa.1998.0193

[5] B. Van der Pol, The fundamental principles of frequency modulation, Journal of the Institution of Electrical Engineers, Part III: Radio and Communication Engineering 93(23) (1946), 153-158.
DOI: https://doi.org/10.1049/ji-3-2.1946.0024

[6] D. Gabor, Theory of communication, Journal of IEE 93(26) (1946), 429-457.

[7] E. J. Candes, J. Romberg and T. Tao, Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information, IEEE Transactions on Information Theory 52(2) (2006), 489-509.
DOI: https://doi.org/10.1109/tit.2005.862083

[8] E. J. Candes and T. Tao, Near-optimal signal recovery from random projections: Universal encoding strategies, IEEE Transactions on Information Theory 52(12) (2006), 5406-5425.
DOI: https://doi.org/10.1109/TIT.2006.885507

[9] T. Y. Hou and Z. Q. Shi, Adaptive data analysis via sparse time-frequency representation, Advances in Adaptive Data Analysis 3(1-2) (2011), 1-28.
DOI: https://doi.org/10.1142/S1793536911000647

[10] T. Y. Hou and Z. Q. Shi, Data-driven time-frequency analysis, Applied and Computational Harmonic Analysis 35(2) (2013), 284-308.
DOI: https://doi.org/10.1016/j.acha.2012.10.001

[11] T. Y. Hou, Z. Q. Shi and P. Tavallali, Convergence of a data-driven time-frequency analysis method, Applied and Computational Harmonic Analysis 37(2) (2014), 235-270.
DOI: https://doi.org/10.1016/j.acha.2013.12.004

[12] C. G. Liu, Z. Q. Shi and T. Y. Hou, On the uniqueness of sparse time-frequency representation of multiscale data, Multiscale Modeling & Simulation 13(3) (2015), 790-811.
DOI: https://doi.org/10.1137/141002098

[13] C. G. Liu, Z. Q. Shi and T. Y. Hou, A two-level method for sparse time-frequency representation of multiscale data, Science China Mathematics 60(10) (2017), 1733-1752.
DOI: https://doi.org/10.1007/s11425-016-9088-9

[14] T. Y. Hou and Z. Q. Shi, Sparse time-frequency representation of nonlinear and nonstationary data, Science China Mathematics 56(12) (2013), 2489-2506.
DOI: https://doi.org/10.1007/s11425-013-4733-7

[15] R. L. Smith, Nonlinear and Nonstationary Signal Processing, Cambridge University Press, 2000.

[16] Q. Yang, Error analysis for sparse time-frequency decomposition of non-integer period sampling signals, Journal of Information and Computing Science 14(1) (2019), 25-34.