References

A SIMPLE AND EFFECTIVE DISCRIMINANT FEATURE CONSTRUCTION METHOD FOR IMAGE RECOGNITION


[1] W. Sun and Q. Du, Graph-regularized fast and robust principal component analysis for hyperspectral band selection, IEEE Transactions on Geoscience and Remote Sensing 56(6) (2018), 3185-3195.
DOI: https://doi.org/10.1109/TGRS.2018.2794443

[2] P. Deng, H. Wang, T. Li, S.-J. Horng and X. Zhu, Linear discriminant analysis guided by unsupervised ensemble learning, Information Sciences 480 (2019), 211-221.
DOI: https://doi.org/10.1016/j.ins.2018.12.036

[3] J. Wen, X. Fang, J. Cui, L. Fei, K. Yan, Y. Chen and Y. Xu, Robust sparse linear discriminant analysis, IEEE Transactions on Circuits and Systems for Video Technology 29(2) (2019), 390-403.
DOI: https://doi.org/10.1109/TCSVT.2018.2799214

[4] G. F. Lu, Y. Wang, J. Zou and Z. Wang, Matrix exponential based discriminant locality preserving projections for feature extraction, Neural Networks 97 (2018), 127-136.
DOI: https://doi.org/10.1016/j.neunet.2017.09.014

[5] B. Chen, J. Yang, B. Jeon and X. Zhang, Kernel quaternion principal component analysis and its application in RGB-D object recognition, Neurocomputing 266 (2017), 293-303.
DOI: https://doi.org/10.1016/j.neucom.2017.05.047

[6] H. K. Min, Y. Hou, S. Park and I. Song, A computationally efficient scheme for feature extraction with kernel discriminant analysis, Pattern Recognition 50 (2016), 45-55.
DOI: https://doi.org/10.1016/j.patcog.2015.08.021

[7] G. Shikkenawis and S. K. Mitra, On some variants of locality preserving projection, Neurocomputing 173(Part 2) (2016), 196-211.
DOI: https://doi.org/10.1016/j.neucom.2015.01.100

[8] S. Su, H. Ge and Y. H. Yuan, Kernel propagation strategy: A novel out-of-sample propagation projection for subspace learning, Journal of Visual Communication and Image Representation 36 (2016), 69-79.
DOI: https://doi.org/10.1016/j.jvcir.2016.01.007

[9] A. A. S. Najafabadi and F. T. Azar, Removing redundancy data with preserving the structure and visuality in a database, Signal, Image and Video Processing 13(4) (2019), 745-752.
DOI: https://doi.org/10.1007/s11760-018-1404-8

[10] A. Khalili Mobarakeh, J. A. Cabrera Carrillo and J. J. Castillo Aguilar, Robust face recognition based on a new supervised kernel subspace learning method, Sensors 19(7) (2019); Article 1643.
DOI: https://doi.org/10.3390/s19071643

[11] X. Song, Z. H. Feng, G. Hu, J. Kittler and X.-J. Wu, Dictionary integration using 3D morphable face models for pose-invariant collaborative-representation-based classification, IEEE Transactions on Information Forensics and Security 13(11) (2018), 2734-2745.
DOI: https://doi.org/10.1109/TIFS.2018.2833052

[12] S. Su, H. Ge and Y. Tong, Multi-graph embedding discriminative correlation feature learning for image recognition, Signal Processing: Image Communication 60 (2018), 173-182.
DOI: https://doi.org/10.1016/j.image.2017.10.005