[1] A. Bahri and H. Berestycki, Forced vibrations of superquadratic
Hamiltonian systems, Acta Math. 152(1) (1984), 143-197.
DOI: https://doi.org/10.1007/BF02392196
[2] V. Benci and P. H. Rabinowitz, Critical points theorems for
indefinite functionals, Invent. Math. 52(3) (1979), 241-273.
DOI: https://doi.org/10.1007/BF01389883
[3] K. C. Chang, Infinite Dimensional Morse Theory and Multiple
Solution Problems, Birkhäuser, Boston, 1993.
[4] C. Conley and E. Zehnder, Morse-type index theory for flows and
periodic solutions for Hamiltonian equations, Comm. Pure Appl. Math.
37(2) (1984), 207-253.
DOI: https://doi.org/10.1002/cpa.3160370204
[5] I. Ekeland, Convexity Method in Hamiltonian Mechanics,
Springer-Verlag, Berlin, 1990.
[6] I. Ekeland and H. Hofer, Subharmonics for convex nonautonomous
Hamiltonian systems, Comm. Pure Appl. Math. 40(1) (1987), 1-36.
DOI: https://doi.org/10.1002/cpa.3160400102
[7] N. Ghoussoub, Location, multiplicity and Morse indices of min-max
critical points, J. Reine Angew. Math. 417 (1991), 27-76.
DOI: https://doi.org/10.1515/crll.1991.417.27
[8] C. Li, The study of subharmonic solutions for subquadratic
Hamiltonian systems, Acta Sci. Natur. Uni. Nankai, 47(2014), 59-66.
[9] C. Li, The study of minimal period estimates for brake orbits of
autonomous subquadratic Hamiltonian systems, Acta Math. Sinica,
English Series 31(10) (2015), 1645-1658.
DOI: https://doi.org/10.1007/s10114-015-4421-3
[10] C. Li, Brake subharmonic solutions of subquadratic Hamiltonian
systems, Chin. Ann. Math. 37(3) (2016), 405-418.
DOI: https://doi.org/10.1007/s11401-016-0970-8
[11] C. Liu, Subharmonic solutions of Hamiltonian systems, Nonlinear
Anal. TMA 42(2) (2000), 185-198.
DOI: https://doi.org/10.1016/S0362-546X(98)00339-3
[12] C. Liu and Y. Long, Iteration inequalities of the maslov-type
index theory with applications, J. Differential Equations 165(2)
(2000), 355-376.
DOI: https://doi.org/10.1006/jdeq.2000.3775
[13] Y. Long, Index Theory for Symplectic Paths with Applications,
Birkhäuser, Basel, 2000.
[14] Y. Long, Maslov-type index, degenerate critical points, and
asymptotically linear Hamiltonian systems, Science in China (Series A)
33(12) (1990), 1409-1419.
[15] Y. Long and E. Zehnder, Morse Theory for Forced Oscillations of
Asymptotically Linear Hamiltonian Systems, In Stoc. Proc. Phys. and
Geom. (S. Albeverio et al. Editor) World Sci. (1990), 528-563.
[16] P. H. Rabinowitz, Minimax Methods in Critical Point Theory with
Applications to Differential Equations, CBMS Regional Conf. Ser. in
Math., AMS, RI 65 (1986).
[17] P. H. Rabinowitz, On subharmonic solutions of Hamiltonian
systems, Comm. Pure Appl. Math. 33(5) (1980), 609-633.
DOI: https://doi.org/10.1002/cpa.3160330504
[18] C. Viterbo, A new obstruction to embedding Lagrangian tori,
Invent. Math. 100(1) (1990), 301-320.
DOI: https://doi.org/10.1007/BF01231188