References

THE BOLTZMANN EQUATION WITH POTENTIAL FORCES FOR INVERSE POWER LAW


[1] R. Alexandre, Y. Morimoto, S. Ukai, C.-J. Xu and T. Yang, The Boltzmann equation without angular cutoff in the whole space: I; Global existence for soft potential, J. Funct. Anal. 262(3) (2012), 915-1010.
DOI: https://doi.org/10.1016/j.jfa.2011.10.007

[2] Russel E. Caflisch, The Boltzmann equation with a soft potential, I, Linear, spatially-homogeneous, Comm. Math. Phys. 74(1) (1980), 71-95.
DOI: https://doi.org/10.1007/BF01197579

[3] Russel E. Caflisch, The Boltzmann equation with a soft potential, II, Nonlinear, spatially-periodic, Comm. Math. Phys. 74(2) (1980), 97-109.
DOI: https://doi.org/10.1007/BF01197752

[4] R.-J, Duan, Stability of the Boltzmann equation with potential forces on tours, Physica D 238(17) (2009), 1808-1820.
DOI: https://doi.org/10.1016/j.physd.2009.06.007

[5] R.-J. Duan and S.-Q. Liu, The Vlasov-Poisson-Boltzmann system without angular cut-off, Comm. Math. Phys. 324(1) (2013), 1-45.
DOI: https://doi.org/10.1007/s00220-013-1807-x

[6] R.-J. Duan, S.-Q. Liu, T. Yang and H.-J. Zhao, Stability of the non relativistic Vlasov-Maxwell-Boltzmann system for angular non-cut-off a potentials, Kinet. Relat. Models 6(1) (2013), 159-204.
DOI: http://dx.doi.org/10.3934/krm.2013.6.159

[7] Y.-Z. Fan, Y.-J. Lei, S.-Q. Liu and H.-J. Zhao, The non-cut-off Vlasov-Maxwell-Boltzmann system with weak angular singularity, Sci. China Math. 61(1) (2018), 111-136.
DOI: https://doi.org/10.1007/s11425-016-9083-x

[8] P. T. Gressman and R. M. Strain, Global classical solutions of the Boltzmann equation without angular cut-off, J. Amer. Math. Soc. 24(3) (2011), 771-847.
DOI: https://doi.org/10.1090/S0894-0347-2011-00697-8

[9] Y. Guo, The Vlasov-Poisson-Boltzmann system near Maxwellians, Comm. Pure Appl. Math. 55(9) (2002), 1104-1135.
DOI: https://doi.org/10.1002/cpa.10040

[10] Y. Guo, The Vlasov-Poisson-Laudau system in a periodic box, J. Amer. Math. Soc. 25(3) (2012), 759-812.
DOI: https://doi.org/10.1090/S0894-0347-2011-00722-4

[11] S.-Q. Liu and X. Ma, Exponential decay of the Landau equation with potential force, J. Math. Anal. Appl. 394(1) (2012), 159-176.
DOI: https://doi.org/10.1016/j.jmaa.2012.04.049

[12] R. M. Strain and Y. Guo, Exponential decay for soft potentials near Maxwellian, Arch. Ration. Mech. Anal. 187(2) (2008), 287-339.
DOI: https://doi.org/10.1007/s00205-007-0067-3

[13] S. Ukai, T. Yang and H.-J. Zhao, Global solutions to the Boltzmann equation with external forces, Anal. Appl. 3(2) (2005), 157-193.
DOI: https://doi.org/10.1142/S0219530505000522

[14] T. Yang and H.-J. Yu, Optimal convergence rate of the Landau equation with external forcing in the whole space, Acta Math. Sci. 29(4) (2009), 1035-1062.
DOI: https://doi.org/10.1016/S0252-9602(09)60085-0

[15] T. Yang and H.-J. Zhao, Global existence of classical solutions to the Vlasov-Poisson-Boltzmann system, Comm. Math. Phys. 268(3) (2006), 569-605.
DOI: https://doi.org/10.1007/s00220-006-0103-4