References

RADIOMICS FEATURES APPLICATION TO LUNG CANCER CLASSIFICATION IN CT IMAGE AND ITS CLINICAL EXPLANATION


[1] Robert M. Haralick, K. Shanmugam and Its’Hak Dinstein, Textural features for image classification, IEEE Transactions on Systems, Man, and Cybernetics, SMC-3(6) (1973), 610-621.
DOI: https://doi.org/10.1109/TSMC.1973.4309314

[2] M. M. Galloway, Texture analysis using gray level run lengths, Computer Graphics and Image Processing 4(2) (1975), 172-179.
DOI: https://doi.org/10.1016/S0146-664X(75)80008-6

[3] D. G. Lowe, Distinctive image features from scale-invariant keypoints, International Journal of Computer Vision 60(2) (2004), 91-110.
DOI: https://doi.org/10.1023/B:VISI.0000029664.99615.94

[4] N. Dalal and B. Triggs, Histograms of oriented gradients for human detection, Computer Vision and Pattern Recognition 1 (2005), 886-893.
DOI: https://doi.org/10.1109/CVPR.2005.177

[5] Alex Krizhevsky, Ilya Sutskever and Geoffrey E. Hintonr, ImageNet classification with deep convolutional neural networks, Neural Information Processing Systems, Conference (2012), 1097-1105.

[6] Philippe Lambin, Emmanuel Rios-Velazquez, Ralph Leijenaar et al., Radiomics: Extracting more information from medical images using advanced feature analysis, European Journal of Cancer 48(4) (2012), 441-446.
DOI: https://doi.org/10.1016/j.ejca.2011.11.036

[7] V. Kumar, Y. Gu, S. Basu et al., Radiomics: The process and the challenges, Magnetic Resonance Imaging 30(9) (2012), 1234-1248.
DOI: https://doi.org/10.1016/j.mri.2012.06.010

[8] R. J. Gillies, P. E. Kinahan and H. Hricak, Radiomics: Images are more than pictures, They are data, Radiology 278(2) (2015), 563-577.
DOI: https://doi.org/10.1148/radiol.2015151169

[9] K. Pearson, Contributions to the mathematical theory of evolution, II: Skew variation in homogeneous material, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 186 (1895), 343-414.
DOI: https://doi.org/10.1098/rsta.1895.0010

[10] Ed Sutton, Histograms and the Zone System, Illustrated Photography.

[11] A. H. Robinson and C. Cherry, Results of a prototype television bandwidth compression scheme, Proceedings of the IEEE 55(3) (1967), 356-364.
DOI: https://doi.org/10.1109/PROC.1967.5493

[12] ‘Wikipedia: Form factor’
https://en.wikipedia.org/wiki/Form_factor_(design).

[13] J. Hopcroft and R. Tarjan, Algorithm 447: Efficient algorithms for graph manipulation, Communications of the ACM 16(6) (1973), 372-378.
DOI: https://doi.org/1145/362248.362272

[14] Guillaume Thibault, Bernard Fertil, Claire Navarro et al., Texture indexes and gray level size zone matrix, Application to cell nuclei classification, Pattern Recognition and Information Processing (2009), 140-145.

[15] Guillaume Thibault, Bernard Fertil, Claire Navarro et al., Shape and texture indexes application to cell nuclei classification, International Journal of Pattern Recognition and Artificial Intelligence 27(1) (2013), 23 pages.
DOI: https://doi.org/10.1142/S0218001413570024

[16] Guillaume Thibault, Jesus Angulo and Fernand Meyer, Advanced statistical matrices for texture characterization: Application to DNA chromatin and microtubule network classification, IEEE International Conference on Image Processing (2011), 53-56.

[17] ‘Wikipedia: NSCLC-Radiomics’,
https://wiki.cancerimagingarchive.net/display/Public/NSCLC-Radiomics.< br />

[18] David A. Freedman, Statistical Models: Theory and Practice, Cambridge University Press (2009), 128.

[19] Christopher M. Bishop, Pattern Recognition and Machine Learning (Corr. printing. ed.). New York: Springer, 2007.

[20] D. R. Cox, The regression analysis of binary sequences (with discussion), Journal of the Royal Statistical Society, Series B 20(2) (1958), 215-242.

[21] S. Biondo, E. Ramos, M. Deiros et al., Prognostic factors for mortality in left colonic peritonitis: A new scoring system, Journal of the American College of Surgeons 191(6) (2000), 635-642.
DOI: https://doi.org/10.1016/S1072-7515(00)00758-4

[22] D. W. Hosmer, T. Hosmer, S. Le Cessie and S. Lemeshow, A comparison of goodness-of-fit tests for the logistic regression model, Statistics in Medicine 16(9) (1997), 965-980.

[23] James A. Hanley and Barbara J. McNeil, The meaning and use of the area under a receiver operating characteristic (ROC) curve, Radiology 143(1) (1982), 29-36.
DOI: https://doi.org/10.1148/radiology.143.1.7063747

[24] Jorge M. Lobo, Alberto Jiménez-Valverde and Raimundo Real, AUC: A misleading measure of the performance of predictive distribution models, Global Ecology and Biogeography 17(2) (2008), 145-151.
DOI: https://doi.org/10.1111/j.1466-8238.2007.00358.x

[25] Tom Fawcett, An introduction to ROC analysis, Pattern Recognition Letters 27(8) (2006), 861-874.
DOI: https://doi.org/10.1016/j.patrec.2005.10.010

[26] B. K. Natarajan, Sparse approximate solutions to linear systems, SIAM Journal on Computing 24(2) (1995), 227-234.
DOI: https://doi.org/10.1137/S0097539792240406

[27] Scikit-Learn: Logistic Regression CV.
http://scikit-learn.org/stable/modules/generated/sklearn.linear_model. LogisticRegressionCV.html