[1] D. B. West, An Introduction to Graph Theory, Prentice-Hall,
1996.
[2] A. T. Balaban (Ed.), From Chemical Topology to Three-dimensional
Geometry, Plenum, New York, 1997.
[3] R. Todeschini and V. Consonni, Handbook of Molecular Descriptors,
Wiley, Weinheim, 2000.
[4] I. Gutman and N. Trinajstić, Graph theory and molecular
orbitals, III, Total energy of alternant hydrocarbons, Chem.
Phys. Lett. 17 (1972), 535-538.
[5] I. Gutman and K. C. Das, The first Zagreb index 30 years after,
MATCH Commun. Math. Comput. Chem. 50 (2004), 83-92.
[6] R. Todeschini and V. Consonni, New local vertex invariants and
molecular descriptors based on functions of the vertex degrees, MATCH
Commun. Math. Comput. Chem. 64 (2010), 359-372.
[7] R. Todeschini, D. Ballabio and V. Consonni, Novel molecular
descriptors based on functions of the vertex degrees, in: I. Gutman
and B. Furtula (Eds.), Novel Molecular Structure Descriptors-Theory
and Applications I, Univ. Kragujevac, Kragujevac, (2010), 73-100.
[8] I. Gutman, Multipicative Zagreb indices of trees, Bull. Internat.
Math. Virt. Inst. 1 (2011), 13-19.
[9] M. Ghorbani and M. A. Hosseinzadeh, A new version of Zagreb
indices, Filomat 26(1) (2012), 93-100.
[10] D. Vukicevic and A. Graovac, Note on the comparison of the first
and second normalized Zagreb eccentricity indices, Acta Chim. Slov. 57
(2010), 524-528.
[11] S. Sardana and A. K. Madan, MATCH Commun. Math. Comput. Chem.
43(85) (2001).
[12] S. Gupta, M. Singh and A. K. Madan, J. Math. Anal. Appl. (2002),
266-259.
[13] B. Furtula, A. Graovac and D. VukiÄević, Disc. Appl. Math.
157 (2009), 2828.
[14] N. De, On multiplicative Zagreb eccentricity indices, South Asian
J. Math. 2(6) (2012), 570-577.
[15] Z. Du, B. Zhou and N. Trinajstic, Extremal properties of the
Zagreb eccentricity indices, Croat. Chem. Acta 85(3) (2012),
359-362.
[16] K. C. Das, D. W. Lee and A. Graovac, Some properties of the
Zagreb eccentricity indices, Ars Math. Contemp. 6 (2013), 117-125.
[17] K. Xu and H. Hua, A united approach to extremal multiplicative
Zagreb indices for trees, unicyclic and bicyclic graphs, MATCH Commun.
Math. Comput. Chem. 68 (2012), 241-256.
[18] J. Liu and Qianhong Zhang, Sharp upper bounds for multiplicative
Zagreb indices, MATCH Commun. Math. Comput. Chem. 68 (2012),
231-240.
[19] T. Reti and I. Gutman, Relations between ordinary and
multiplicative Zagreb indices, Bull. Internat. Math. Virt. Inst. 2
(2012), 133-140.
[20] Z. Luo and J. Wu, Multiplicative Zagreb eccentricity indices of
some composite graphs, Trans. Comb. 3(2)
(2014), 21-29.
[21] H. Wang and H. Bao, A note on multiplicative sum Zagreb index,
South Asian J. Math. 2(6) (2012), 578-583.
[22] M. R. Farahani, Multiplicative versions of Zagreb indices of
Journal of Chemistry and Materials Research 2(2) (2015), 67-70.
[23] M. R. Farahani, On multiple Zagreb indices of dendrimer
nanostars, International Letters of Chemistry, Physics and Astronomy
52 (2015), 147-151.
[24] M. R. Farahani, On multiple Zagreb indices of circumcoronene
homologous series of benzenoid, Chemical Physics Research Journal 7(2)
(2014), 277-282.
[25] V. Chepoi and S. Klavžar, Distances in benzenoid systems:
Further developments, Discrete. Math. 192 (1998), 27-39.
[26] S. Klavžar and I. Gutman, Bounds for the Schultz molecular
topological index of benzenoid systems in terms of Wiener index, J.
Chem. Inf. Comput. Sci. 37(4) (1997), 741-744.
[27] S. Klavžar, A bird s eye view of the cut method and a survey
of its applications in chemical graph theory, MATCH Commun. Math.
Comput. Chem. 60 (2008), 255-274.
[28] P. E. John, P. V. Khadikar and J. Singh, A method of computing
the PI index of benzenoid hydrocarbons using orthogonal cuts, J. Math.
Chem. 42(1) (2007), 27-45.
[29] S. Klavžar, I. Gutman and B. Mohar, Labeling of benzenoid
systems which reflects the vertex-distance relations, J. Chem. Inf.
Comput. Sci. 35 (1995), 590-593.
[30] S. Klavžar and I. Gutman, A comparison of the Schultz
molecular topological index with the Wiener index, J. Chem. Inf.
Comput. Sci. 36 (1996), 1001-1003.
[31] K. Salem, S. Klavžar and I. Gutman, On the role of hyper-cubes
in the resonance graphs of benzenoid graphs, Discrete Math. 13(8)
(2003), 306.
[32] P. Zigert, S. Klavžar and I. Gutman, Calculating the
hyper-Wiener index of benzenoid hydrocarbons, ACH Models Chem. 137
(2000), 83-94.
[33] M. R. Farahani, Computing first-, second -connectivity index and
first-, second-sum-connectivity index of circumcoronene series of
benzenoid, Pacific Journal of Applied Mathematics 6(4) (2014).
[34] M. R. Farahani, A new version of Zagreb index of circumcoronene
series of benzenoid, Chemical Physics Research Journal 6(1) (2013),
27-33.
[35] M. R. Farahani, Third-connectivity and third-sum-connectivity
indices of circumcoronene series of benzenoid Acta Chim. Slov. 60 (2013), 198-202.
[36] M. R. Farahani, Computing eccentricity connectivity polynomial of
circumcoronene series of benzenoid by ring-cut method, Annals of West
University of Timisoara-Mathematics and Computer Science 51(2) (2013),
29-37.