[1] A. Ãdám, Research problem 2-10, J. Combin. Theory 2 (1967),
393.
[2] B. Alspach and T. D. Parsons, Isomorphism of circulant graphs and
digraphs, Discrete Math. 25(2) (1979), 97-108.
[3] L. Babai, Isomorphism problem for a class of point-symmetric
structures, Acta Mathematica Academiae Scientiarum Hungaricae 29(3)
(1977), 329-336.
[4] E. Dobson, Isomorphism problem for Cayley graphs of Discrete Math. 147(1-3) (1995), 87-94.
[5] P. DomÃnguez Wade, Modular representations of the group
MQ over the ring Asian Journal of Mathematics,
International Press 10(4) (2006), 665-677.
[6] B. Elspas and J. Turner, Graphs with circulant adjacency matrices,
J. Combin. Theory Ser. B 9 (1970), 297-307.
[7] C. D. Godsil, On Cayley graph isomorphisms, Ars Combin. 15 (1983),
231-246.
[8] M. Muzychuk, Ãdám’s conjecture is true in the
square-free case, J. Combin. Theory Ser. A 72 (1995), 118-134.
[9] M. Muzychuk, On Ãdám’s conjecture for circulant
graphs, Discrete Math. 176 (1997), 285-298.
[10] T. Okuyama, Module correspondence in finite groups, Hokkaido
Mathematical Journal 10 (1981), 299-318.
[11] G. R. Robinson and R. Staszewski, On the representation theory of
groups, J. Algebra 119(1) (1988),
226-232.