[1] P. M. Anderson and A. A. Fouad, Power System Control and
Stability, 2nd Edition, Piscataway, NJ: IEEE, 2003.
[2] L. Wehenkel, M. Pavella, E. Euxibie and B. Heilbronn, Decision
tree based transient stability method a case study, IEEE Trans. Power
Systems 9 (1994), 459-469.
[3] L. S. Moulin, A. P. A. da Silva, M. A. El-Sharkawi and R. J. Marks
II, Support vector machines for transient stability analysis of
large-scale power systems, IEEE Trans. Power Systems 19 (2004),
818-825.
[4] Sun Kai, S. Likhate, V. Vittal, V. S. Kolluri and S. Mandal, An
online dynamic security assessment scheme using phasor measurements
and decision trees, IEEE Transactions on Power Systems 22 (2007),
1935-1943.
[5] N. Amjady and S. F. Majedi, Transient stability prediction by a
hybrid intelligent system, IEEE Trans. Power Systems 22 (2007),
1275-1283.
[6] F. R. Gomez, A. D. Rajapakse, U. D. Annakkage and I. T. Fernando,
Support vector machine-based algorithm for post-fault transient
stability status prediction using synchronized measurements, IEEE
Trans. Power Systems 26 (2011), 1474-1483.
[7] Y. Xu, Z. Y. Dong, J. H. Zhao, P. Zhang and K. P. Wong, A reliable
intelligent system for real-time dynamic security assessment of power
systems, IEEE Trans. Power Systems 27 (2012), 1253-1263.
[8] C. A. Jensen, M. A. El-Sharkawi and R. J. Marks, Power system
security assessment using neural networks: Feature selection using
Fisher discrimination, IEEE Trans. Power Systems 16 (2001),
757-763.
[9] S. K. Tso and X. P. Gu, Feature selection by separability
assessment of input spaces for transient stability classification
based on neural networks, International Journal of Electrical Power &
Energy Systems 26 (2004), 153-162.
[10] Harinder Sawhney and B. Jeyasurya, A feed-forward artificial
neural network with enhanced feature selection for power system
transient stability assessment, Electric Power Systems Research 76(12)
(2006), 1047-1054.
[11] R. W. Swiniarski and A. Skowron, Rough set methods in feature
selection and recognition, Pattern Recognition Letters 24(6) (2003),
833-849.
[12] R. Jensen and Q. Shen, Fuzzy-rough sets assisted attribute
selection, IEEE Trans. Fuzzy Systems 15(1) (2007), 73-89.
[13] Qinghua Hu, Daren Yu, Witold Pedrycz and Degang Chen, Kernelized
fuzzy rough sets and their applications, IEEE Trans. Knowledge and
Data Engineering 23 (2011), 1649-1667.
[14] C. E. Rasmussen and C. K. I. Williams, Gaussian Processes for
Machine Learning, MIT Press, Cambridge, 2006.
[15] H. Nickisch and C. E. Rasmussen, Approximations for binary
Gaussian process classification, Journal of Machine Learning Research
9 (2008), 2035-2078.
[16] Fei Cheng, Jiangsheng Yu and Huilin Xiong, Facial expression
recognition in JAFFE dataset based on Gaussian process classification,
IEEE Trans. Neural Networks 21 (2010), 1685-1690.
[17] Mahdi Jadaliha, Yunfei Xu, Jongeun Choi, N. S. Johnson and
Weiming Li, Gaussian process regression for sensor networks under
localization uncertainty, IEEE Trans. Signal Processing 61(2) (2013),
223-237.
[18] A. G. Phadke and J. S. Thorp, Synchronized Phasor Measurements
and their Applications, Springer, New York, 2008.
[19] C. W. Taylor, D. C. Erickson, K. Martin, R. E. Wilson and V.
Venkatasubramanian, WACS-wide-area stability and voltage control
system: R&D and online demonstration, Proceedings of the IEEE 93
(2005), 892-906.
[20] V. Terzija, G. Valverds, Cai Deyu, P. Regulski, V. Madani, J.
Fitch, S. Skok, M. M. Begovic and A. Phadke, Wide-area monitoring,
protection, and control of future electric power networks, Proceedings
of the IEEE 99 (2011), 80-93.
[21] B. Moser, On representing and generating kernels by fuzzy
equivalence relations, Journal of Machine Learning Research 7 (2006),
2603-2620.
[22] L. Yu and H. Liu, Efficient feature selection via analysis of
relevance and redundancy, Journal of Machine Learning Research 5
(2004), 1205-1224.