References

THE EXISTENCE AND UNIQUENESS OF THE SOLUTION FOR A CLASS OF MIXED-TYPE INTEGRAL EQUATION


[1] Mircea Dan Rus, A note on the existence of positive solutions of Fredholm integral equations, Fixed Point Theory 5 (2004), 369-377.

[2] Ravi P. Agarwal, Said R. Grace and Donal O’Regan, Existence of positive solutions to semipositone Fredholm integral equations, Funkcialaj Ekvacioj 45 (2002), 223-235.

[3] F. Calio, A. I. Garralda-Guillem, E. Marchetti and M. R. Galan, Numerical approaches for systems of Volterra-Fredholm integral equations, Applied Mathematics and Computation 225 (2013), 811-821.

[4] G. Q. Long and Gnaneshwar Nelakantib, Iteration methods for Fredholm integral equations of the second kind, Comput. Math. Appl. 53 (2007), 886-894.

[5] H. Y. Li and X. L. Wang, The existence of multiple solutions for a class of nonlinear Fredholm type integral equations, Chinese J. Eng. Math. 22 (2005), 909-913 (in Chinese).

[6] A. X. Qian and Z. Q. Zhao, Coupled quasi-solutions and solutions of nonlinear impulsive Fredholm integral equations in Banach spaces, J. Sys. Sci. & Math. Scis. 24 (2004), 488-495 (in Chinese).

[7] H. B. Chen and P. L. Li, Three-point boundary value problems for second-order ordinary differential equations in Banach spaces, Comput. Math. Appl. 56 (2008), 1852-1860.

[8] Z. G. Wang, L. S. Liu and Y. H. Wu, The unique solution of boundary value problems for nonlinear second-order integral-differential equations of mixed type in Banach spaces, Comput. Math. Appl. 54 (2007), 1293-1301.

[9] L. S. Liu, L. L. Liu and Y. H. Wu, Positive solutions of two-point boundary value problems for systems of nonlinear second-order singular and impulsive differential equations, Nonlinear Anal. 69 (2008) 3774-3789.

[10] M. Q. Feng and H. H. Pang, A class of three-point boundary-value problems for second-order impulsive integro-differential equations in Banach spaces, Nonlinear Anal. 70 (2009), 64-82.

[11] K. Deiming, Nonlinear Functional Analysis, Springer-Verlag, Berlin, 1985.

[12] V. Lakshmikantham and S. Leela, Nonlinear Differential Equations in Abstract Spaces, Pergamon Press, New York, 1981.

[13] Dajun Guo, V. Lakshmikantham and Xinzhi Liu, Nonlinear Integral Equations in Abstract Spaces, Kluwer Academic Publisher, Dordrecht, 1996.

[14] L. S. Liu, F. Guo, C. X. Wu and Y. H. Wu, Existence theorems of global solutions for nonlinear Volterra type integral equations in Banach spaces, J. Math. Anal. Appl. 309 (2005), 638-649.

[15] L. S. Liu, Iterative method for solutions and coupled quasi-solutions of nonlinear Fredholm integral equations in ordered Banach spaces, Indian J. Pure Appl. Math. 27 (1996), 959-972.