References

A NEW FILLED FUNCTION FOR FINDING GLOBAL MINIMIZER OF THE UNCONSTRAINED OPTIMIZATION PROBLEM


[1] R. Ge, A filled function method for finding a global minimizer of a function of several variables, Mathematical Programming 46 (1990), 191-204.

[2] R. Ge, The theory of filled function method for finding global minimizers of nonlinearly constrained minimization problems, Journal of Computational Mathematics 5 (1987), 1-9.

[3] Xian Liu and Wilsun Xu, A new filled function applied to global optimization, Computer and Operation Research 31 (2004), 61-80.

[4] F. H. Branin, Widely convergent methods for finding multiple solutions of simultaneous nonlinear equations, IBM Journal of Research and Development 16 (1972), 504-522.

[5] J. A. Snyman and L. P. Fatti, A multi-start global minimization algorithm with dynamic search trajectories, Journal of Optimization Theory and Applications 54 (1987), 121-141.

[6] P. Basso, Iterative methods for the localization of the global maximum, SIAM Journal on Numerical Analysis 19 (1982), 781-792.

[7] R. H. Mladineo, An algorithm for finding the global maximum of a multimodal, multivariate function, Mathematical Programming 34 (1986), 188-200.

[8] A. V. Levy and A. Montalvo, The tunneling algorithm for the global minimization of functions, SIAM Journal on Scientific and Statistical Computing 6 (1985), 15-29.

[9] L. Bai, J. Y. Liang, C. Y. Dang and F. Y. Cao, A cluster centers initialization method for clustering categorical data, Expert Systems with Applications 39 (2012), 8022-8029.

[10] N. Baba, Global optimization of functions by the random optimization method, Int. J. Control 30 (1979), 1061-1065.

[11] C. Dorea, Limiting distribution for random optimization methods, SIAM J. Control Optim. 24 (1986), 76-82.

[12] C. Dang, W. Ma and J. Liang, A deterministic annealing algorithm for approximating a solution of the min-bisection problem, Neural Networks 22 (2009), 58-66.

[13] Y. W. Leung and Y. Wang, An orthogonal genetic algorithm with quantization for global numerical optimization, IEEE Transactions on Evolutionary Computation 5 (2001), 41-53.

[14] Y. W. Leung, Multiobjective programming using uniform design and genetic algorithm, IEEE Transactions on Systems, Man and Cybernetics C 30 (2000), 293-304.

[15] R. Storn and K. Price, Differential evolution: A simple and efficient heuristic for global optimization over continuous spaces, J. Glob. Optim. 11 (1997), 341-359.

[16] E. F. Campana, G. Liuzzi, S. Lucidi, D. Peri, V. Piccialli and A. Pinto, New global optimization methods for ship design problems, Optimization and Engineering 10 (2009), 533-555.

[17] X. L Wang and G. B. Zhou, A new filled function for unconstrained global optimization, Applied Mathematics and Computation 174 (2006), 419-429.

[18] Yong Jun Wang and Jiang She Zhang, A new constructing auxiliary function method for global optimization, Mathematical Computer Modelling 47 (2008), 1396-1410.

[19] X. Liu, The barrier attribute of filled functions, Applied Mathematics and Computation 149 (2004), 641-649.

[20] Hongwei Lin and Huirong Li, A new filled function with one parameter to solve global optimization, Open Journal of Optimization 4 (2015), 10-20.

[21] Xian Liu, Finding global minima with a computable filled function, Journal of Global Optimization 19 (2001), 151-161.

[22] Xian Liu, A class of continuously differentiable filled functions for global optimization, IEEE Transactions on Systems, Man and Cybernetics-Part A: System and Humans 38 (2008), 38-47.

[23] Lian-Sheng Zhang, Chi-Kong Ng, Duan Li and Wei-Wen Tian, A new filled function method for global optimization, Journal of Global Optimization 28 (2004), 17-43.

[24] Fei Wei, Yuping Wang and Hongwei Lin, A new filled function method with two parameters for global optimization, Journal of Optimization Theory and Applications 163 (2014), 510-527.