[1] R. Ge, A filled function method for finding a global minimizer of
a function of several variables, Mathematical Programming 46 (1990),
191-204.
[2] R. Ge, The theory of filled function method for finding global
minimizers of nonlinearly constrained minimization problems, Journal
of Computational Mathematics 5 (1987), 1-9.
[3] Xian Liu and Wilsun Xu, A new filled function applied to global
optimization, Computer and Operation Research 31 (2004), 61-80.
[4] F. H. Branin, Widely convergent methods for finding multiple
solutions of simultaneous nonlinear equations, IBM Journal of Research
and Development 16 (1972), 504-522.
[5] J. A. Snyman and L. P. Fatti, A multi-start global minimization
algorithm with dynamic search trajectories, Journal of Optimization
Theory and Applications 54 (1987), 121-141.
[6] P. Basso, Iterative methods for the localization of the global
maximum, SIAM Journal on Numerical Analysis 19 (1982), 781-792.
[7] R. H. Mladineo, An algorithm for finding the global maximum of a
multimodal, multivariate function, Mathematical Programming 34 (1986),
188-200.
[8] A. V. Levy and A. Montalvo, The tunneling algorithm for the global
minimization of functions, SIAM Journal on Scientific and Statistical
Computing 6 (1985), 15-29.
[9] L. Bai, J. Y. Liang, C. Y. Dang and F. Y. Cao, A cluster centers
initialization method for clustering categorical data, Expert Systems
with Applications 39 (2012), 8022-8029.
[10] N. Baba, Global optimization of functions by the random
optimization method, Int. J. Control 30 (1979), 1061-1065.
[11] C. Dorea, Limiting distribution for random optimization methods,
SIAM J. Control Optim. 24 (1986), 76-82.
[12] C. Dang, W. Ma and J. Liang, A deterministic annealing algorithm
for approximating a solution of the min-bisection problem, Neural
Networks 22 (2009), 58-66.
[13] Y. W. Leung and Y. Wang, An orthogonal genetic algorithm with
quantization for global numerical optimization, IEEE Transactions on
Evolutionary Computation 5 (2001), 41-53.
[14] Y. W. Leung, Multiobjective programming using uniform design and
genetic algorithm, IEEE Transactions on Systems, Man and Cybernetics C
30 (2000), 293-304.
[15] R. Storn and K. Price, Differential evolution: A simple and
efficient heuristic for global optimization over continuous spaces, J.
Glob. Optim. 11 (1997), 341-359.
[16] E. F. Campana, G. Liuzzi, S. Lucidi, D. Peri, V. Piccialli and A.
Pinto, New global optimization methods for ship design problems,
Optimization and Engineering 10 (2009), 533-555.
[17] X. L Wang and G. B. Zhou, A new filled function for unconstrained
global optimization, Applied Mathematics and Computation 174 (2006),
419-429.
[18] Yong Jun Wang and Jiang She Zhang, A new constructing auxiliary
function method for global optimization, Mathematical Computer
Modelling 47 (2008), 1396-1410.
[19] X. Liu, The barrier attribute of filled functions, Applied
Mathematics and Computation 149 (2004), 641-649.
[20] Hongwei Lin and Huirong Li, A new filled function with one
parameter to solve global optimization, Open Journal of Optimization 4
(2015), 10-20.
[21] Xian Liu, Finding global minima with a computable filled
function, Journal of Global Optimization 19 (2001), 151-161.
[22] Xian Liu, A class of continuously differentiable filled functions
for global optimization, IEEE Transactions on Systems, Man and
Cybernetics-Part A: System and Humans 38 (2008), 38-47.
[23] Lian-Sheng Zhang, Chi-Kong Ng, Duan Li and Wei-Wen Tian, A new
filled function method for global optimization, Journal of Global
Optimization 28 (2004), 17-43.
[24] Fei Wei, Yuping Wang and Hongwei Lin, A new filled function
method with two parameters for global optimization, Journal of
Optimization Theory and Applications 163 (2014), 510-527.