References

FOURIER-LIKE SOLUTION OF THE DIRICHLET PROBLEM FOR THE LAPLACE EQUATION IN K-TYPE GIELIS DOMAINS


[1] A. Bondeson, T. Rylander and P. Ingelstrom, Computational Electromagnetics, Springer Science, 2005.

[2] D. Caratelli, B. Germano, J. Gielis, M. X. He, P. Natalini and P. E. Ricci, Fourier Solution of the Dirichlet Problem for the Laplace and Helmholtz Equations in Starlike Domains, Tbilisi University Press, 2010.

[3] L. Carleson, On convergence and growth of partial sums of Fourier series, Acta Math. 116 (1966), 135-157.

[4] J. Gielis, A generic geometric transformation that unifies a wide range of natural and abstract shapes, Amer. J. Botany 90 (2003), 333-338.

[5] J. Gielis, S. Haesen and L. Verstraelen, Universal shapes: From the supereggs of Piet Hein to the cosmic egg of George Lemaître, Kragujevac J. Math. 28 (2005), 55-67.

[6] B. N. KhoromskiÄ­, Integro-difference method of solution of the Dirichlet problem for the Laplace equation, Zh. Vychisl. Mat. I Mat. Fiz. 24 (1984), 53-64.

[7] N. N. Lebedev, Special Functions and their Applications, Dover Publ., 1972.

[8] D. Medková, Solution of the Dirichlet problem for the Laplace equation, Appl. Math. 44 (1999), 143-168.

[9] G. P. Tolstov, Fourier Series, Dover Publ., 1962.

[10] A. P. Volkov, An effective method for solving the Dirichlet problem for the Laplace equation, Differentsialnye Uravneniya 19 (1983), 1000-1007.

[11] D. M. Young, Iterative methods for solving partial difference equations of elliptic type, Trans. Amer. Math. Soc. 76 (1954), 92-111.