[1] A. Bondeson, T. Rylander and P. Ingelstrom, Computational
Electromagnetics, Springer Science, 2005.
[2] D. Caratelli, B. Germano, J. Gielis, M. X. He, P. Natalini and P.
E. Ricci, Fourier Solution of the Dirichlet Problem for the Laplace
and Helmholtz Equations in Starlike Domains, Tbilisi University Press,
2010.
[3] L. Carleson, On convergence and growth of partial sums of Fourier
series, Acta Math. 116 (1966), 135-157.
[4] J. Gielis, A generic geometric transformation that unifies a wide
range of natural and abstract shapes, Amer. J. Botany 90 (2003),
333-338.
[5] J. Gielis, S. Haesen and L. Verstraelen, Universal shapes: From
the supereggs of Piet Hein to the cosmic egg of George Lemaître,
Kragujevac J. Math. 28 (2005), 55-67.
[6] B. N. KhoromskiÄ, Integro-difference method of solution of the
Dirichlet problem for the Laplace equation, Zh. Vychisl. Mat. I Mat.
Fiz. 24 (1984), 53-64.
[7] N. N. Lebedev, Special Functions and their Applications, Dover
Publ., 1972.
[8] D. Medková, Solution of the Dirichlet problem for the Laplace
equation, Appl. Math. 44 (1999), 143-168.
[9] G. P. Tolstov, Fourier Series, Dover Publ., 1962.
[10] A. P. Volkov, An effective method for solving the Dirichlet
problem for the Laplace equation, Differentsialnye Uravneniya 19
(1983), 1000-1007.
[11] D. M. Young, Iterative methods for solving partial difference
equations of elliptic type, Trans. Amer. Math. Soc. 76 (1954), 92-111.