[1] H. W. Alt and S. Luckhauss, Quasilinear elliptic and parabolic
differential equations, Math. Z. 183 (1983), 311-341.
[2] C. T. Anh and P. Q. Hung, Global existence and long-time behaviour
of solutions to a class of degenerate parabolic equations, Ann. Pol.
Math. 3(93) (2008), 217-230.
[3] G. Astrita and G. Marrucci, Principales of Non-Newtonian Fluid
Mechanics, McGraw-Hill, New York, 1974.
[4] J. Diaz and F. de Thelin, On a nonlinear parabolic problem arising
in some models related to turbulent flows, Siam. J. Anal. Math. 25(4)
(1994), 1085-1111.
[5] L. Dung, Global attractors and steady states for a class of
reaction diffusion systems, J. Differential Equations 147 (1998),
1-29.
[6] L. Dung, Ultimate boundedness of solutions and gradients of a
class of degenerate parabolic systems, Nonlinear Analysis T.M.A 39
(2000), 157-171.
[7] A. Eden, B. Michaux and J. M. Rakotoson, Semi-discretized
nonlinear evolution equations as discrete dynamical systems and error
analysis, Ind. Uni. Math. Journal 39(3) (1990), 737-783.
[8] A. Eden, B. Michaux and J. M. Rakotoson, Doubly nonlinear
parabolic type equations as dynamical systems, Journal of Dynamics and
Differential Equations 3(1) (1991).
[9] H. El Ouardi and A. El Hachimi, Existence and attractors of
solutions for nonlinear parabolic systems, EJQTDE (5) (2001), 1-16.
[10] H. El Ouardi and A. El Hachimi, Existence and regularity of a
global attractor for doubly nonlinear parabolic equations, Electron.
J. Diff. Eqns. 2002(45) (2002), 1-15.
[11] H. El Ouardi and A. El Hachimi, Attractors for a class of doubly
nonlinear parabolic systems, E. J. Qualitative Theory Diff. Equ. (1)
(2006), 1-15.
[12] H. El Ouardi, On the finite dimension of attractors of doubly
nonlinear parabolic systems with l-trajectories, Archivum
Mathematicum (BRNO), Tomus 43 (2007), 289-303.
[13] J. R. Esteban and J. L. Vasquez, On the equation of turbulent
filteration in one-dimensional porous media, Nonlinear Anal. 10
(1982), 1303-1325.
[14] C. Foias and R. Temam, Structure of the set of stationary
solutions of the Navier-Stokes equations, Comm. Pure Appl. Math. 30
(1977), 149-164.
[15] C. Foias, P. Constantin and R. Temam, Attractors representing
turbulent flows, AMS Memoirs 53(314) (1985).
[16] O. Ladyzhznskaya, V. A. Solonnikov and N. N. Outraltseva, Linear
and Quasi-Linear Equations of Parabolic Type, Trans. Amer. Math. Soc.,
Providence, RI, 1968.
[17] M. Langlais and D. Phillips, Stabilization of solution of
nonlinear and degenerate evolution equations, Nonlinear Analysis,
T.M.A. 9 (1985), 321-333.
[18] J. L. Lions, Quelques Méthodes de Résolution des
Problèmes aux Limites Non Linéaires, Dunod, Paris, 1969.
[19] J. Malek and D. Prazak, Long time behaviour via the method of
l-trajectories, J. Differential Equations 18(2) (2002),
243-279.
[20] M. Marion, Attractors for reaction-diffusion equation: Existence
and estimate of their dimension, Applicable Analysis (25) (1987),
101-147.
[21] V. S. Melnik and J. Valero, On attractors of multi-valued
semiflows and differential inclusions, Set Valued Anal. 6(4) (1998),
83-111.
[22] A. Miranville, Finite dimensional global attractor for a class of
doubly nonlinear parabolic equations, Central European Journal of
Mathematics 4(1) (2006), 163-182.
[23] M. Schatzman, Stationary solutions and asymptotic behaviour of a
quasi-linear parabolic equation, Ind. Univ. J. 33(1) (1984), 1-29.
[24] J. Simon, Régularité de la solution d’un problème
aux limites non linéaire, Annales Fac. Sc. Toulouse 3, Série 5
(1981), 247-274.
[25] R. Temam, Infinite Dimensional Dynamical Systems in Mechanics and
Physics, Applied Mathematical Sciences, No. 68, Springer-Verlag,
1988.
[26] M. Tsutsumi, On solutions of some doubly nonlinear degenerate
parabolic systems with absorption, J. Math. Anal. Appl. 132 (1988),
187-212.