References

GLOBAL ATTRACTOR FOR QUASILINEAR PARABOLIC SYSTEMS INVOLVING WEIGHTED LAPLACIAN OPERATORS


[1] H. W. Alt and S. Luckhauss, Quasilinear elliptic and parabolic differential equations, Math. Z. 183 (1983), 311-341.

[2] C. T. Anh and P. Q. Hung, Global existence and long-time behaviour of solutions to a class of degenerate parabolic equations, Ann. Pol. Math. 3(93) (2008), 217-230.

[3] G. Astrita and G. Marrucci, Principales of Non-Newtonian Fluid Mechanics, McGraw-Hill, New York, 1974.

[4] J. Diaz and F. de Thelin, On a nonlinear parabolic problem arising in some models related to turbulent flows, Siam. J. Anal. Math. 25(4) (1994), 1085-1111.

[5] L. Dung, Global attractors and steady states for a class of reaction diffusion systems, J. Differential Equations 147 (1998), 1-29.

[6] L. Dung, Ultimate boundedness of solutions and gradients of a class of degenerate parabolic systems, Nonlinear Analysis T.M.A 39 (2000), 157-171.

[7] A. Eden, B. Michaux and J. M. Rakotoson, Semi-discretized nonlinear evolution equations as discrete dynamical systems and error analysis, Ind. Uni. Math. Journal 39(3) (1990), 737-783.

[8] A. Eden, B. Michaux and J. M. Rakotoson, Doubly nonlinear parabolic type equations as dynamical systems, Journal of Dynamics and Differential Equations 3(1) (1991).

[9] H. El Ouardi and A. El Hachimi, Existence and attractors of solutions for nonlinear parabolic systems, EJQTDE (5) (2001), 1-16.

[10] H. El Ouardi and A. El Hachimi, Existence and regularity of a global attractor for doubly nonlinear parabolic equations, Electron. J. Diff. Eqns. 2002(45) (2002), 1-15.

[11] H. El Ouardi and A. El Hachimi, Attractors for a class of doubly nonlinear parabolic systems, E. J. Qualitative Theory Diff. Equ. (1) (2006), 1-15.

[12] H. El Ouardi, On the finite dimension of attractors of doubly nonlinear parabolic systems with l-trajectories, Archivum Mathematicum (BRNO), Tomus 43 (2007), 289-303.

[13] J. R. Esteban and J. L. Vasquez, On the equation of turbulent filteration in one-dimensional porous media, Nonlinear Anal. 10 (1982), 1303-1325.

[14] C. Foias and R. Temam, Structure of the set of stationary solutions of the Navier-Stokes equations, Comm. Pure Appl. Math. 30 (1977), 149-164.

[15] C. Foias, P. Constantin and R. Temam, Attractors representing turbulent flows, AMS Memoirs 53(314) (1985).

[16] O. Ladyzhznskaya, V. A. Solonnikov and N. N. Outraltseva, Linear and Quasi-Linear Equations of Parabolic Type, Trans. Amer. Math. Soc., Providence, RI, 1968.

[17] M. Langlais and D. Phillips, Stabilization of solution of nonlinear and degenerate evolution equations, Nonlinear Analysis, T.M.A. 9 (1985), 321-333.

[18] J. L. Lions, Quelques Méthodes de Résolution des Problèmes aux Limites Non Linéaires, Dunod, Paris, 1969.

[19] J. Malek and D. Prazak, Long time behaviour via the method of l-trajectories, J. Differential Equations 18(2) (2002), 243-279.

[20] M. Marion, Attractors for reaction-diffusion equation: Existence and estimate of their dimension, Applicable Analysis (25) (1987), 101-147.

[21] V. S. Melnik and J. Valero, On attractors of multi-valued semiflows and differential inclusions, Set Valued Anal. 6(4) (1998), 83-111.

[22] A. Miranville, Finite dimensional global attractor for a class of doubly nonlinear parabolic equations, Central European Journal of Mathematics 4(1) (2006), 163-182.

[23] M. Schatzman, Stationary solutions and asymptotic behaviour of a quasi-linear parabolic equation, Ind. Univ. J. 33(1) (1984), 1-29.

[24] J. Simon, Régularité de la solution d’un problème aux limites non linéaire, Annales Fac. Sc. Toulouse 3, Série 5 (1981), 247-274.

[25] R. Temam, Infinite Dimensional Dynamical Systems in Mechanics and Physics, Applied Mathematical Sciences, No. 68, Springer-Verlag, 1988.

[26] M. Tsutsumi, On solutions of some doubly nonlinear degenerate parabolic systems with absorption, J. Math. Anal. Appl. 132 (1988), 187-212.