References

MODELLING OF AN INCOMPRESSIBLE ELASTIC THIN OSCILLATING LAYER


[1] E. Acerbi, G. Buttazzo and D. Percivale, Thin inclusions in linear elasticity: A variational approach, J. Rein. Angew. Math. 386 (1988), 99-115.

[2] A. Ait Moussa and C. Licht, Comportement asymptotique d’une plaque mince non lineaire, J. Math. du Maroc. 2 (1994), 1-16.

[3] A. Ait Moussa, Comportement Asymptotique des Solutions d’un Problème de Bandes Minces, Thèse de Doctorat, Oujda, Maroc., 1995

[4] A. Ait Moussa and J. Messaho, Limit behaviour of an oscillating thin layer, Electronic Journal of Differential Equations, Conference 14 (2006), 21-33.

[5] H. Attouch, Variational Convergence for Functions and Operators, Pitman Advance Publishing Program, 1984.

[6] H. Brezis, Analyse Fonctionnelle, Théorie et Applications, Masson, 1992.

[7] A. Brillard, Asymptotic analysis of nonlinear thin layers, International Series of Numerical Mathematics 123 (1997).

[8] E. De Giorgi, Convergence Problems for Functions and Operators, Proceedings of the International Congress on Recent Methods in Nonlinear Analysis, Rome 1978, De Giorgi, Mosco, Spagnolo Eds., Pitagora Editrice (Bologna), 1979.

[9] I. Ekeland and R. Temam, Analyse Convexe et Problèmes Variationnels, Paris, 1974.

[10] J. F. Ganghoffer, A. Brillard and J. Schultz, Modelling of mechanical behaviour of joints bonded by a nonlinear incompressible elastic adhesive, European Journal of Mechanics, A/Solids 16(2) (1997), 255-276.

[11] F. Hecht, O. Pironneau, A. Le Hyaric and K. Ohtsuka, FreeFem++ Manual, downloadable at
www.Freefem.org

[12] C. Licht and G. Michaille, A Modelling of Elastic Adhesive Bonded Joints, Preprint 1995/12, Département des Sciences Mathématiques, Université Montpellier II.

[13] H. Phum Huy and E. Sanchez-Palencia, Phénoménes de transmission à travers des couches minces de conductivité élevée, Journal of Mathematical Analysis and Applications 47 (1974), 284-309.

[14] R. Temam, Problémes Mathématiques en Plasticité, Ed. Gauthier Villars, Paris, 1983.