[1] E. Beretta and F. Solinano, Analysis of a chemostat model for
bacteria and virulent bacteriophage, Discrete and Continuous Dynamical
Systems, 2 (2002), 495-520.
[2] A. Campbell, Conditions for existence of bacteriophage, Evolution
15 (1961), 153-165.
[3] D. D. Hassard, N. D. Kazarinoff and Y. H. Wan, Theory and
Applications of Hopf Bifurcation, Cambridge University Press,
Cambridge, (1981), 498-499.
[4] C. S. Holling, The components of predation as revealed by a study
of small mammal predation of the European pine sawfly, Canad. Entomol.
91 (1959), 293-320.
[5] C. S. Holling, Some characteristics of simple types of predation
and parasitism, Canad. Entomol 91 (1959), 385-398.
[6] B. R. Levin, F. M. Stewart and L. Chao, Resource-limited growth,
competition and predation: A model and experinment studies with
bacteria and bacteriophage, American Naturalist, 111 (1997), 3-24.
[7] J. E. Marsden and M. McCracken, The Hopf Bifurcation and its
Applications, Springer-Verlag, New York, (1976), 410-412.
[8] S. J. Peacock, S. Mandal and ICJW, Bowler, Preventing
Staphylococcus aureus infection in the remal unit, Q. J. Med. 95
(2002), 405-410.
[9] T. Puttasontiphot, Y. Lenbury, C. Rattanakul, S.
Rattanamongkonkul, J. R. Hotchkiss and P. S. Crooke, Dynamic processes
permitting stable coexistence of antimicrobial resistant and
non-resistant organisms in a gastrointestinal tract model, Scienceasia
33 (2007), 197-206.
[10] S. Ruan and J. Wei, On the zeros of a third degree exponential
polynomial with applications to a delayed model for the control of
testosterone section, IMA J. Math. Appl. Med. Biol. 18(1) (2001),
41-52.
[11] K. Todar, Bacterial Resistance to Antibiotic (2008), 1-4.