[1] Y. Q. Chen, I. Petras and D. Xue, Fractional order control - A
tutorial, In: American Control Conference, June 10-12, St. Louis, MO,
USA. IEEE (2009), 1397-1411.
DOI: https://doi.org/10.1109/ACC.2009.5160719
[2] A. Boulkroune and S. Ladaci, Editors, Advanced Synchronization
Control and Bifurcation of Chaotic Fractional-Order Systems, IGI
Global, Hershey, PA, USA, 2018.
DOI: https://doi.org/10.4018/978-1-5225-5418-9
[3] S. Ladaci and A. Charef, Fractional Adaptive Control: A Survey,
In: E. Mitchell and S. Murray, Editors, Classification and Application
of Fractals: New Research, NOVA Publishers, USA (2012), 261-275.
[4] I. Podlubny, Fractional Differential Equations, Academic Press,
San Diego, 1999.
[5] A. Oustaloup, The Crone Control (la commande CRONE), Hermès,
Paris, 1991.
[6] S. Ladaci, J. J. Loiseau and A. Charef, Fractional order adaptive
high-gain controllers for a class of linear systems, Communications in
Nonlinear Science and Numerical Simulations 13(4) (2008), 707-714.
DOI: https://doi.org/10.1016/j.cnsns.2006.06.009
[7] E. F. Camacho and C. Bordons, Model Predictive Control in the
Process Industry, In: Advances in Industrial Control, Springer Verlag,
Germany, 1995.
[8] E. F. Camacho and C. Bordons, Implementation of self-tuning
generalized predictive controllers for the process industry,
International Journal of Adaptive Control and Signal Processing 7(1)
(1993), 63-73.
DOI: https://doi.org/10.1002/acs.4480070106
[9] C. Bordons and E. F. Camacho, A generalized predictive controller
for a wide class of industrial processes, IEEE Transactions on Control
Systems Technology 6(3) (1998), 372-387.
DOI: https://doi.org/10.1109/87.668038
[10] J. Grimble and A. W. Ordys, Predictive control for industrial
applications, Annual Reviews in Control 25 (2001), 13-24.
DOI: https://doi.org/10.1016/S1367-5788(01)00003-7
[11] D. W. Clarke, Application of generalized predictive control, IFAC
Proceedings Volumes 21(7) (1988), 1-8.
DOI: https://doi.org/10.1016/S1474-6670(17)53792-1
[12] S. J. Qin and T. A. Badgwell, A survey of industrial model
predictive control technology, Control Engineering Practice 11(7)
(2003), 733-764.
DOI: https://doi.org/10.1016/S0967-0661(02)00186-7
[13] M. G. Forbes, R. S. Patwardhan, H. Hamadah and R. Bhushan
Gopaluni, Model predictive control in industry: Challenges and
opportunities, IFAC-PapersOnLine 48(8) (2015), 531-538.
DOI: https://doi.org/10.1016/j.ifacol.2015.09.022
[14] M. Short, Input-Constrained Adaptive GPC for Simple Industrial
Plant, In: IEEE 18th International Conference on Automation and
Computing (ICAC), 7-8 Sept., Loughborough, UK, 2012.
[15] S. Pooseh, R. Almeida and D. F. M. Torres, Fractional order
optimal control problems with free terminal time, Journal of
Industrial and Management Optimization 10(2) (2014), 363-381.
DOI: https://doi.org/10.3934/jimo.2014.10.363
[16] J. Sabatier, P. Lanusse, P. Melchior and A. Oustaloup, Fractional
order differentiation and robust control design: CRONE, h-infinity and
motion control, In: Intelligent Systems, Control and Automation:
Science and Engineering, 6 May, Springer, Germany, 2015.
[17] J. Wang, C. Shao and Y. Q. Chen, Fractional order sliding mode
control via disturbance observer for a class of fractional order
systems with mismatched disturbance, Mechatronics 53 (2018), 8-19.
DOI: https://doi.org/10.1016/j.mechatronics.2018.05.006
[18] D. Boudjehem and B. Boudjehem, The use of fractional order models
in predictive control, In: 3rd Conference on Nonlinear Science and
Complexity, Symposium: Fractional Calculus Applications, July, Ankara,
Turkey, 2010.
[19] A. Rhouma, B. Bouzouita and F. Bouani, Model Predictive Control
of Fractional Systems using Numerical Approximation, In: 2014 World
Symposium on Computer Applications Research (WSCAR), January 18-20,
Sousse, Tunisia, 2014, p. 1-6.
DOI: https://doi.org/10.1109/WSCAR.2014.6916818
[20] I. Deghboudj and S. Ladaci, Fractional order model predictive
control of conical tank level, In: International Conference on
Automatic control, Telecommunication and Signals (ICATS17); 11-12
December, Annaba, Algeria (2017), 1-6.
[21] I. Deghboudj and S. Ladaci, Fractional order adaptive model
predictive control, In: Electrical Engineering International
Conference, EEIC19, December 04-05, Bejaia, Algeria (2019), 1-6.
[22] I. Deghboudj and S. Ladaci, Fractional-order multi-model
predictive control for nonlinear processes, International Journal of
Automation and Control, 2020.
[23] S. Domek, Fuzzy predictive control of fractional-order nonlinear
discrete-time systems, Acta Mechanica et Automatica 5(2) (2010),
23-26.
[24] Z. Deng, H. Cao, X. Li, J. Jiang, J. Yang and Y. Qin, Generalized
predictive control for fractional order dynamic model of solid oxide
fuel cell output power, Journal of Power Sources 195(24) (2010),
8097-8103.
DOI: https://doi.org/10.1016/j.jpowsour.2010.07.053
[25] M. Romero, A. P. de Madrid, C. Manoso, V. Milanés and B. M.
Vinagre, Fractional-order generalized predictive control: Application
for low-speed control of gasoline-propelled cars, Mathematical
Problems in Engineering (2013); Article ID 895640 pp. 1-10.
DOI: https://doi.org/10.1155/2013/895640
[26] M. Romero, A. P. de Madrid, C. Manoso and B. M. Vinagre, A survey
of fractional-order generalized predictive control, In: 2012 IEEE 51st
Annual Conference on Decision and Control (CDC), December 10-13,
Hawaii (2012), p. 6867-6872.
DOI: https://doi.org/10.1109/CDC.2012.6426244
[27] M. Romero, C. Manoso, A. P. de Madrid and Blas M. Vinagre,
Fractional-order generalized predictive control: Formulation and some
properties, In: 11th International Conference on Control Automation
Robotics & Vision, 7-10th December, Singapore (2010), p. 1495-1500.
DOI: https://doi.org/10.1109/ICARCV.2010.5707408
[28] K. J. Åstrôm and B. Wittenmark, Adaptive Control, 2nd
Edition, New York, Addison-Wesley, 1995.
[29] K. B. Oldham and J. Spanier, The Fractional Calculus, New York,
Academic Press, 1974.
[30] P. C. Young, Recursive Estimation and Time-Series Analysis, 2nd
Edition, London, Springer, 2011.
[31] D. W. Clarke, C. Mohtadi and P. S. Tuffs, Generalized predictive
control-Part I: The basic algorithm, Automatica 23(2) (1987),
137-148.
DOI: https://doi.org/10.1016/0005-1098(87)90087-2
[32] S. M. Moon, R. L. Clark and D. G. Cole, Adaptive generalized
predictive control combined with a least-squares lattice filter, In:
Smart Structures and Materials 2004: Modeling, Signal Processing, and
Control, Vol. 5383, San Diego, CA, USA, 2004.
DOI: https://doi.org/10.1117/12.538493
[33] A. L. Elshafei, A. Elnaggar and G. Dumont, Stability and
convergence analysis of an adaptive GPC based on state space modeling,
In: 35th IEEE Conference on Decision and Control, 13-13 Dec., Kobe,
Japan, 1996.
DOI: https://doi.org/10.1109/CDC.1996.573711
[34] D. S. Coca, D. Coca and S. A. Billings, An adaptive GPC approach
to low-flow anaesthesia, IFAC Proceedings Volumes 38(1) (2005),
7-12.
DOI: https://doi.org/10.3182/20050703-6-CZ-1902.02115
[35] S. Ladaci and Y. Bensafia, Indirect fractional order pole
assignment based adaptive control, Engineering Science and Technology,
An International Journal 19(1) (2016), 518-530.
DOI: https://doi.org/10.1016/j.jestch.2015.09.004
[36] H. Balaska, S. Ladaci, A. Djouambi, H. Schulte and B. Bourouba,
Fractional order tube model reference adaptive control for a class of
fractional order linear systems, International Journal of Applied
Mathematics and Computer Science 30(3) (2020), 501-515.
DOI: https://doi.org/10.34768/amcs-2020-0037
[37] W. Wang, A direct adaptive generalized predictive control
algorithm with guaranteed stability, International Journal of Adaptive
Control and Signal Processing 8(3) (1994), 211-222.
DOI: https://doi.org/10.1002/acs.4480080301
[38] D. Xue, C. Zhao and Y. Q. Chen, Fractional order PID control of a
DC-motor with elastic shaft: A case study, In: 2006 American Control
Conference, June 14-16, Minneapolis, Minnesota, USA, 2006.
DOI: https://doi.org/10.1109/ACC.2006.1657207