References

INDIRECT BOUNDARY EXACT CONTROLLABILITY OF A MULTIDIMENSIONAL SYSTEM OF COUPLED WAVE EQUATIONS IN A REGULAR DOMAIN


[1] A. Wehbe, Rational energy decay rate for a wave equation with dynamical control, Applied Mathematics Letters 16(3) (2003), 357-364.
DOI: https://doi.org/10.1016/S0893-9659(03)80057-5

[2] B. Sz.-Nagy and C. Foias, Analyse Harmonique d’Opérateurs de l’Espace de Hilbert, Masson, Paris, 1967.

[3] Haïm Brezis, Analyse fonctionnelle, Collection Mathématiques Appliquées pour la Maîtrise, Théorie et Applications, Masson, Paris, 1983, xiv + 234, 2 - 225 - 77198 - 7, 46 - 01(47 - 01), 697382(85a : 46001).

[4] C. D. Benchimol, A note on weak stabilizability of contraction semigroups, SIAM Journal on Control and Optimization 16(3) (1978), 373-379.
DOI: https://doi.org/10.1137/0316023

[5] C. Seck, A. Sène and M. T. Niane, Estimates related to the extended spectral control of the wave equation, Journal of Mathematics Research 10(4) (2018), 156-164.
DOI: https://doi.org/10.5539/jmr.v10n4p156

[6] Farid Ammar Khodja and Ahmed Bader, Stabilizability of systems of one-dimensional wave equations by one internal or boundary control force, SIAM Journal on Control and Optimization 39(6) (2001), 1833-1851.
DOI: https://doi.org/10.1137/S0363012900366613

[7] Farid Ammar Khodja, Assia Benabdallah and Djamel Teniou, Stability of coupled systems, Abstract and Applied Analysis 1(3) (1996); Article ID 901468, pages 14.
DOI: https://doi.org/10.1155/S1085337596000176

[8] F. Huang, Strong asymptotic stability of linear dynamical systems in Banach spaces, Journal of Differential Equations 104(2) (1993), 307-324.
DOI: https://doi.org/10.1006/jdeq.1993.1074

[10] J.-L. Lions, Contrôlabilité exacte, perturbations et stabilisation de systemes distributes: Tome 1, Recherches en Mathématiques Appliquées, Research in Applied Mathematics, Volume 8, Paris, 1988.

[11] J.-L. Lions, Contrôlabilité exacte, perturbations et stabilisation de systèmes distributes: Tome 2, Recherches en Mathématiques Appliquées, Research in Applied Mathematics.

[12] B. Rao and Z. Liu, A spectral approach to the indirect boundary control of a system of weakly coupled wave equations, Discrete and Continuous Dynamical Systems: A 23(1-2) (2009), 399-414.
DOI: https://doi.org/10.3934/dcds.2009.23.399

[13] V. Komornik, Exact Controllability and Stabilization: The Multiplier Method, Collection R. M. A. Éditions Masson et J. Wiley, 1994.