References

A MIXED VOLUME ELEMENT WITH CHARACTERISTIC MIXED VOLUME ELEMENT FOR CONTAMINATION TRANSPORT PROBLEM


[1] R. A. Adams, Sobolev Spaces, Academic Press, New York, 1975.

[2] T. Arbogast and M. F. Wheeler, A characteristics-mixed finite element method for advection-dominated transport problems, SIAM Journal on Numerical Analysis 32(2) (1995), 404-424.
DOI: https://doi.org/10.1137/0732017

[3] J. B. Bell, C. N. Dawson and G. R. Shubin, An unsplit, higher order Godunov method for scalar conservation laws in multiple dimensions, Journal of Computational Physics 74(1) (1988), 1-24.
DOI: https://doi.org/10.1016/0021-9991(88)90065-4

[4] Z. Cai, On the finite volume element method, Numerische Mathematik 58(1) (1990), 713-735.
DOI: https://doi.org/10.1007/BF01385651

[5] Z. Cai, J. E. Jones, S. F. McCormick and T. F. Russell, Control-volume mixed finite element methods, Computational Geosciences 1(3-4) (1997), 289-315.
DOI: https://doi.org/10.1023/A:1011577530905

[6] M. A. Cella, T. F. Russell, I. Herrera and R. E. Ewing, An Eulerian-Lagrangian localized adjoint method for the advection-diffusion equation, Advances in Water Resources 13(4) (1990), 187-206.
DOI: https://doi.org/10.1016/0309-1708(90)90041-2

[7] P. G. Ciarlet, The Finite Element Method for Elliptic Problems, North Holland, Amsterdam, 1978.

[8] S. H. Chou, D. Y. Kwak and P. S. Vassilevski, Mixed covolume methods for elliptic problems on triangular grids, SIAM Journal on Numerical Analysis 35(5) (1998), 1850-1861.
DOI: https://doi.org/10.1137/S0036142997321285

[9] S. H. Chou and P. S. Vassilevski, A general mixed covolume framework for constructing conservative schemes for elliptic problems, Mathematics of Computation 68(227) (1999), 991-1011.
DOI: https://doi.org/10.1090/S0025-5718-99-01090-X

[10] S. H. Chou and D. Y. Kwak, Mixed covolume methods on rectangular grids for elliptic problems, SIAM Journal on Numerical Analysis 37(3) (2000), 758-771.
DOI: https://doi.org/10.1137/S0036142996305534

[11] C. N. Dawson, T. F. Russell and M. F. Wheeler, Some improved error estimates for the modified method of characteristics, SIAM Journal on Numerical Analysis 26(6) (1989), 1487-1512.
DOI: https://doi.org/10.1137/0726087

[12] C. N. Dawson, C. J. Van Duijn and M. F. Wheeler, Characteristic-Galerkin methods for contaminant transport with nonequilibrium adsorption kinetics, SIAM Journal on Numerical Analysis 31(4) (1994), 982-999.
DOI: https://doi.org/10.1137/0731052

[13] C. N. Dawson, Analysis of an upwind-mixed finite element method for nonlinear contaminant transport equations, SIAM Journal on Numerical Analysis 35(5) (1998), 1709-1724.
DOI: https://doi.org/10.1137/S0036142993259421

[14] J. Douglas Jr., Simulation of miscible displacement in porous media by a modified method of characteristic procedure, In Numerical Analysis, Dundee, 1981; Lecture Notes in Mathematics, 912, Springer-Verlag, Berlin, 1982.
DOI: https://doi.org/10.1007/BFb0093149

[15] J. Douglas Jr., R. E. Ewing and M. F. Wheeler, Approximation of the pressure by a mixed method in the simulation of miscible displacement, RAIRO Analyse Numérique 17(1) (1983), 17-33.

[16] J. Douglas Jr., R. E. Ewing and M. F. Wheeler, A time-discretization procedure for a mixed finite element approximation of miscible displacement in porous media, RAIRO Analyse Numérique 17(3) (1983), 249-265.

[17] R. E. Ewing, The Mathematics of Reservoir Simulation, SIAM, Philadelphia, 1983.

[18] U. Hornung, Miscible Displacement in Porous Media Influenced by Mobile and Immobile Water, Nonlinear Partial Differential Equations, Springer, New York, 1988.

[19] R. H. Li and Z. Y. Chen, Generalized Difference of Differential Equations, Jilin University Press, Changchun, 1994 (in Chinese).

[20] L. S. Jiang and Z. Y. Pang, Finite Element Method and its Theory, People’s Education Press, Beijing, 1979 (in Chinese).

[21] C. Johnson, Streamline Diffusion Methods for Problems in Fluid Mechanics, in Finite Element in Fluids VI, Wiley, New York, 1986.

[22] J. E. Jones, A Mixed Finite Volume Method for Accurate Computation of Fluid Velocities in Porous Media, Ph. D. Thesis, University of Colorado, Denver, Co., 1995.

[23] J. Nitsche, Linear splint-funktionen und die methoden von ritz fur elliptishce randwertprobleme, Archive for Rational Mechanics and Analysis 36(5) (1970), 348-355.
DOI: https://doi.org/10.1007/BF00282271

[24] H. Pan and H. X. Rui, Mixed element method for two-dimensional Darcy-Forchheimer model, Journal of Scientific Computing 52(3) (2012), 563-587.
DOI: https://doi.org/10.1007/s10915-011-9558-3

[25] P. A. Raviart and J. M. Thomas, A Mixed Finite Element Method for Second Order Elliptic Problems, in: Mathematical Aspects of the Finite Element Method, Lecture Notes in Mathematics, 606, Springer-Verlag, Berlin, 1977.
DOI: https://doi.org/10.1007/BFb0064470

[26] H. X. Rui and H. Pan, A block-centered finite difference method for the Darcy-Forchheimer model, SIAM Journal on Numerical Analysis 50(5) (2012), 2612-2631.
DOI: https://doi.org/10.1137/110858239

[27] T. F. Russell, Rigorous Block-Centered Discretizations on Irregular Grids: Improved Simulation of Complex Reservoir Systems, Project Report, Research Corporation, Tulsa, 1995.

[28] P. P. Shen, M. X. Liu and L. Tang, Mathematical Model of Petroleum Exploration and Development, Science Press, Beijing, 2002 (in Chinese).

[29] T. J. Sun and Y. R. Yuan, An approximation of incompressible miscible displacement in porous media by mixed finite element method and characteristics-mixed finite element method, Journal of Computational and Applied Mathematics 228(1) (2009), 391-411.
DOI: https://doi.org/10.1016/j.cam.2008.09.029

[30] M. R. Todd, P. M. O’Dell and G. J. Hirasaki, Methods for increased accuracy in numerical reservoir simulators, Society of Petroleum Engineers Journal 12(6) (1972), 521-530.
DOI: https://doi.org/10.2118/3516-PA

[31] C. H. Vogt, A Homogenization Theorem Leading to a Volterra Integro-Differential Equation for Permeation Chromotography, SFB 123, Preprint 155, Heidelberg, SFB-Preprints, 1982.

[32] A. Weiser and M. F. Wheeler, On convergence of block-centered finite differences for elliptic problems, SIAM Journal on Numerical Analysis 25(2) (1988), 351-375.
DOI: https://doi.org/10.1137/0725025

[33] D. P. Yang, Analysis of least-squares mixed finite element methods for nonlinear nonstationary convection-diffusion problems, Mathematics of Computation 69(231) (2000), 929-963.
DOI: https://doi.org/10.1090/S0025-5718-99-01172-2

[34] Y. R. Yuan, Characteristic finite element methods for positive semidefinite problem of two phase miscible flow in three dimensions, Science Bulletin China 41(22) (1996), 2027-2032 (in Chinese).

[35] Y. R. Yuan, Characteristic finite difference methods for positive semidefinite problem of two phase miscible flow in porous media, Journal of Systems Science and Mathematical Sciences 12(4) (1999), 299-306.

[36] Y. R. Yuan, Theory and Application of Reservoir Numerical Simulation, Science Press, Beijing, 2013 (in Chinese).

[37] U. Khan, R. Ellahi, R. Khan and S. T. Mohyud-Din, Extracting new solitary wave solutions of Benny-Luke equation and Phi-4 equation of fractional order by using method, Optical and Quantum Electronics 49 (2017), 1-14; Article 362.
DOI: https://doi.org/10.1007/s11082-017-1191-4

[38] W. Sikander, U. Khan, N. Ahmed and S. T. Mohyud-Din, Optimal solutions for homogeneous and non-homogeneous equations arising in physics, Results in Physics 7 (2017), 216-224.
DOI: https://doi.org/10.1016/j.rinp.2016.12.018

[39] W. Sikander, U. Khan and S. T. Mohyud-Din, Optimal solutions for the evolution of a social obesity epidemic model, Eur. Phys. J. Plus 132(6) (2017), 257.

[40] S. T. Mohyud-Din, A. Irshad, N. Ahmed and U. Khan, Exact solutions of generalized KP equation arising in physics, Results in Physics 7 (2017), 3901-3909.
DOI: https://doi.org/10.1016/j.rinp.2017.10.007

[41] S. T. Mohyud-Din, M. A. Noor and K. I. Noor, Some relatively new techniques for nonlinear problems, Mathematical Problems in Engineering (2009), 25 pages; Article ID 234849.
DOI: http://dx.doi.org/10.1155/2009/234849

[42] S. T. Mohyud-Din, A. Yildirim and G. Demirli, Analytical solution of wave system in with coupling controllers, International Journal of Numerical Methods for Heat & Fluid Flow 21(2) (2011), 198-205.
DOI: https://doi.org/10.1108/09615531111105399

[43] S. T. Mohyud-Din, A. Yildirim and S. Sariaydin, Numerical soliton solution of the Kaup-Kupershmidt equation, International Journal of Numerical Methods for Heat & Fluid Flow 21(3) (2011), 272-281.
DOI: https://doi.org/10.1108/09615531111108459

[44] J. H. He, Generalized variational principles for buckling analysis of circular cylinders, Acta Mechanica (2019), 1-8.
DOI: https://doi.org/10.1007/s00707-019-02569-7

[45] J. H. He, Variational principle for the generalized KdV-Burgers equation with fractal derivatives for shallow water waves, Journal of Applied and Computational Mechanics 6(4) (2020).
DOI: https://doi.org/10.22055/JACM.2019.14813

[46] J. H. He, A modified Li-He’s variational principle for plasma, International Journal of Numerical Methods for Heat and Fluid Flow (2019).
DOI: https://doi.org/10.1108/HFF-06-2019-0523

[47] J. H. He, Lagrange crisis and generalized variational principle for 3D unsteady flow, International Journal of Numerical Methods for Heat and Fluid Flow (2019).
DOI: https://doi.org/10.1108/HFF-07-2019-0577

[48] J. H. He and C. Sun, A variational principle for a thin film equation, Journal of Mathematical Chemistry 57(9) (2019), 2075-2081.
DOI: https://doi.org/10.1007/s10910-019-01063-8

[49] C. H. He, Y. Shen, F. Y. Ji and J. H. He, Taylor series solution for fractal Bratu-type equation arising in electrospinning process, Fractals (2019).
DOI: https://doi.org/10.1142/S0218348X20500115

[50] H. Y. Liu, S. W. Yao, H. W. Yang and F. J. Liu, A fractal rate model for adsorption kinetics at solid/solution interface, Thermal Science 23(4) (2019), 2477-2480.
DOI: https://doi.org/10.2298/TSCI1904477L

[51] Q. L. Wang, X. Y. Shi, J. H. He and Z. B. Li, Corrigendum: Fractal calculus and its application to explanation of biomechanism of polar bear hairs, Fractals 27(5) (2019); Article 1992001.
DOI: https://doi.org/10.1142/S0218348X19920014

[52] Y. Wang, S. W. Yao and H. W. Yang, A fractal derivative model for snow’s thermal insulation property, Thermal Science 23(4) (2019), 2351-2354.
DOI: https://doi.org/10.2298/TSCI1904351W