[1] P. H. Rabinowitz, Periodic solutions of hamiltonian systems,
Communications on Pure and Applied Mathematics 31(2) (1978),
157-184.
DOI: https://doi.org/10.1002/cpa.3160310203
[2] V. C. Zelati and P. H. Rabinowitz, Homoclinic orbits for second
order Hamiltonian systems possessing superquadratic potentials,
Journal of the American Mathematical Society 4(4) (1991), 693-727.
DOI: https://doi.org/10.1090/S0894-0347-1991-1119200-3
[3] G.-W. Chen, Superquadratic or asymptotically quadratic Hamiltonian
systems: ground state homoclinic orbits, Annali di Matematica Pura ed
Applicata 194(3) (2015), 903-918.
DOI: https://doi.org/10.1007/s10231-014-0403-9
[4] P. H. Rabinowitz, Homoclinic orbits for a class of Hamiltonian
systems, Proceedings of the Royal Society of Edinburgh Section A:
Mathematics 114(1-2) (1990), 33-38.
DOI: https://doi.org/10.1017/S0308210500024240
[5] Y. Xu and M. Huang, Homoclinic orbits and Hopf bifurcations in
delay differential systems with T-B singularity, Journal of
Differential Equations 244(3) (2008), 582-598.
DOI: https://doi.org/10.1016/j.jde.2007.09.003
[6] A. R. Champneys and G. J. Lord, Computation of homoclinic
solutions to periodic orbits in a reduced water-wave problem, Physica
D: Nonlinear Phenomena 102(1-2) (1997), 101-124.
DOI: https://doi.org/10.1016/S0167-2789(96)00206-0
[7] A. Szulkin and W. M. Zou, Homoclinic orbits for asymptotically
linear Hamiltonian systems, Journal of Functional Analysis 187(1)
(2001) 25-41.
DOI: https://doi.org/10.1006/jfan.2001.3798
[8] G. A. Leonov, N. V. Kuznetsov and T. N. Mokaev, Hidden attractor
and homoclinic orbit in Lorenz-like system describing convective fluid
motion in rotating cavity, Communications in Nonlinear Science and
Numerical Simulation 28(1-3) (2015), 166-174.
DOI: https://doi.org/10.1016/j.cnsns.2015.04.007
[9] G. A. Leonov, N. V. Kuznetsov and T. N. Mokaev, Homoclinic orbits,
and self-excited and hidden attractors in a Lorenz-like system
describing convective fluid motion, European Physical Journal-Special
Topics 224(8) (2015), 1421-1458.
DOI: https://doi.org/10.1140/epjst/e2015-02470-3
[10] M. Izydorek and J. Janczewska, Homoclinic solutions for a class
of the second order Hamiltonian systems, Journal of Differential
Equations 219(2) (2005), 375-389.
DOI: https://doi.org/10.1016/j.jde.2005.06.029
[11] A. R. Champneys, Y. A. Kuznetsov and B. Sandstede, A numerical
toolbox for homoclinic bifurcation analysis, International Journal of
Bifurcation and Chaos 6(5) (1996), 867-887.
DOI: https://doi.org/10.1142/S0218127496000485
[12] A. R. Champneys, Homoclinic orbits in reversible systems and
their applications in mechanics, fluids and optics, Physica D:
Nonlinear Phenomena 112(1-2) (1998), 158-186.
DOI: https://doi.org/10.1016/S0167-2789(97)00209-1