References

DIAGRAMMATIC APROACH TO LEAF-TO-LEAF DISTANCES IN CATALAN TREES


[1] A. M. Goldsborough and R. A. Römer, Self-assembling tensor networks and holography in disordered spin chains, Phys. Rev. B 89(21) (2014), Article 214203.
DOI: https://doi.org/10.1103/PhysRevB.89.214203

[2] A. M. Goldsborough and G. Evenbly, Entanglement renormalization for disordered systems, Phys. Rev. B 96(15) (2017), Article 155136.
DOI: https://doi.org/10.1103/PhysRevB.96.155136

[3] G. Evenbly and G. Vidal, Tensor network states and geometry, J. Stat. Phys. 145(4) (2011), 891-918.
DOI: https://doi.org/10.1007/s10955-011-0237-4

[4] B. Swingle, Entanglement renormalization and holography, Phys. Rev. D 86(6) (2012), Article 065007.
DOI: https://doi.org/10.1103/PhysRevD.86.065007

[5] J. Molina-Vilaplana, Holographic geometries of one-dimensional gapped quantum systems from tensor network states, J. High Energy Phys. 2013, (2013), 1-25.
DOI: https://doi.org/10.1007/JHEP05(2013)024

[6] J. Maldacena, The large-N limit of superconformal field theories and supergravity, Int. J. Theor. Phys. 38(4) (1999), 1113-1133.
DOI: https://doi.org/10.1023/A:1026654312961

[7] J. McGreevy, Holographic duality with a view toward many-body physics, Adv. High Energy Phys. (2010) Article ID 723105, 54 pages.
DOI: http://dx.doi.org/10.1155/2010/723105

[8] K. H. Rosen, Discrete Mathematics and its Applications, Seventh Edition, McGraw Hill, New York, NY, 2012.

[9] R. OÅ•us, A practical introduction to tensor networks: Matrix product states and projected entangled pair states, Ann. Phys. 349 (2014), 117-158.
DOI: https://doi.org/10.1016/j.aop.2014.06.013

[10] R. OÅ•us, Advances on tensor network theory: Symmetries, fermions, entanglement, and holography, Eur. Phys. J. B 87(11) (2014), 280.
DOI: https://doi.org/10.1140/epjb/e2014-50502-9

[11] S. R. White, Density matrix formulation for quantum renormalization groups, Phys. Rev. Lett. 69(19) (1992), 2863-2866.
DOI: https://doi.org/10.1103/PhysRevLett.69.2863

[12] S. Östlund and S. Rommer, Thermodynamic limit of density matrix renormalization, Phys. Rev. Lett. 75(19) (1995), 3537-3540.
DOI: https://doi.org/10.1103/PhysRevLett.75.3537

[13] U. Schollwöck, The density-matrix renormalization group in the age of matrix product states, Ann. Phys. 326(1) (2011), 96-192.
DOI: https://doi.org/10.1016/j.aop.2010.09.012

[14] F. Verstraete and J. I. Cirac, Renormalization algorithms for quantum-many body systems in two and higher dimensions, arXiv:cond-mat/0407066 (2004).

[15] F. Verstraete, V. Murg and J. I. Cirac, Matrix product states, projected entangled pair states, and variational renormalization group methods for quantum spin systems, Adv. Phys. 57(2) (2008), 143-224.
DOI: https://doi.org/10.1080/14789940801912366

[16] V. Murg et al., Simulating strongly correlated quantum systems with tree tensor networks, Phys. Rev. B 82(20) (2010), Article 205105.
DOI: https://doi.org/10.1103/PhysRevB.82.205105

[17] K. Gunst et al., T3NS: Three-legged tree tensor network states, arXiv:1801.09998 (2018).

[18] N. Nakatani and G. K.-L. Chan, Efficient tree tensor network states (TTNS) for quantum chemistry: Generalizations of the density matrix renormalization group algorithm, J. Chem. Phys. 138(13) (2013), Article 134113.
DOI: https://doi.org/10.1063/1.4798639

[19] S. Szalay et al., Tensor product methods and entanglement optimization for ab initio quantum chemistry, Int. J. Quantum Chem. 115(19) (2015), 1342-1391.
DOI: https://doi.org/10.1002/qua.24898

[20] V. Murg et al., Tree tensor network state with variable tensor order: An efficient multireference method for strongly correlated systems, J. Chem. Theory Comput. 11(3) (2015), 1027-1036.
DOI: http://dx.doi.org/10.1021/ct501187j

[21] G. Vidal, Entanglement renormalization, Phys. Rev. Lett. 99(22) (2007), Article 220405.
DOI: https://doi.org/10.1103/PhysRevLett.99.220405

[22] G. Vidal, Class of quantum many-body states that can be efficiently simulated, Phys. Rev. Lett. 101(11) (2008), Article 110501.
DOI: https://doi.org/10.1103/PhysRevLett.101.110501

[23] G. Evenbly and G. Vidal, Algorithms for entanglement renormalization, Phys. Rev. B 79(14) (2009), Article 144108.
DOI: https://doi.org/10.1103/PhysRevB.79.144108

[24] A. M. Goldsborough, S. A. Rautu and R. A. Römer, Leaf-to-leaf distances and their moments in finite and infinite ordered m-ary tree graphs, Phys. Rev. E 91(4) (2015), Article 042133.
DOI: https://doi.org/10.1103/PhysRevE.91.042133

[25] R. Sedgewick and P. Flajolet, An Introduction to the Analysis of Algorithms, Addison-Wesley, Westford, MA, Second Edition, 2013.

[26] T. Koshy, Catalan Numbers with Applications, Oxford University Press, Oxford, Second Edition, 2009.

[27] H. S. Wilf, Generating Functionology, Academic Press, London, Second Edition, 1994.

[28] P. Kirschenhofer, On the height of leaves in binary trees, J. Comb. Inform. System Sci. 8 (1983), 44-60.

[29] A. M. Goldsborough et al., Leaf-to-leaf distances in ordered Catalan tree graphs, arXiv:1502.07893v1 [math-ph] (2015).

[30] A. Panholzer and H. Prodinger, Moments of level numbers of leaves in binary trees, J. Stat. Plan. Inference 101(1-2) (2002), 267-279.
DOI: https://doi.org/10.1016/S0378-3758(01)00187-2

[31] P. Kirschenhofer, Some new results on the average height of binary trees, Ars Combinatoria 16A (1983), 255-260.

[32] B. Haas, J. Pitman and M. Winkel, Spinal partitions and invariance under re-rooting of continuum random trees, Ann. Probab. 37(4) (2009), 1381-1411.
DOI: http://dx.doi.org/10.1214/08-AOP434