[1] C. Alibrantis and O. Burkinshaw, Principles of Mathematical
Analysis, Academic Press, 1988.
[2] Aristotle, Physics, Books I-VIII, translated by P. H. Wicksteads
and F. M. Cornford (1929), Loeb Classical Library, Cambridge, Mass.
and London, 1980.
[3] M. S. Cohen, Zeno’s paradoxes, 2002. From
http://faculty.washington.edu/smcohen/320/tmalect.h
tm
[4] G. Chailos, The Logic of Zeno’s Argument ‘Against
Plurality’, Editor: ΙSSN:2241-4401, to appear.
[5] G. Chailos, Convergence and Complete Continuum in Plato’s
Philosophy, Far East J. Math. Sci. 83(2) (2013), 185-222.
[6] D. Fowler, The Mathematics of Plato’s Academy, Oxford:
Oxford University Press, 1987.
[7] A. Grunbaum, Modern Science and Zeno’s Paradoxes, Wesleyan
University Press: Middletown, Connecticut, 1967.
[8] P. Howard and J. E. Rubin, Consequences of the Axiom of Choice,
Amer. Math. Soc., 1998.
[9] K. Hrbacek and T. Jech, Introduction to Set Theory, Marcel Dekker,
1999.
[10] T. Jech, The Axiom of Choice, Dover Edition, 1973.
[11] V. Karasmanis, Continuity and Incommensurability in Ancient Greek
Philosophy and Mathematics, ‘Socratic Platonic and Aristotelian
Studies: Essays in Honor of G. Santas’, Philosophical Studies
Series, 117, Ch. 22, edited by G. Anagnostopoulos, Springer, 2011.
[12] I. Moschovakis, Notes on Set Theory, 2nd Edition, Springer,
2006.
[13] S. Negrepontis and G. Tassopoulos, On Theodorus lesson in the
Theaetetus 147d-e, arXiv:1205.6681 [math.HO], 30 May 2012.
[14] B. Russell, Our Knowledge of the External World as a Field for
Scientific Method in Philosophy, Open Court Publishing Co.: Chicago,
1914.
[15] M. Tiles, The Philosophy of Set Theory, ‘An Historical
Introduction to Cantor’s Paradise’, Dover Publ.,
1989.
[16] C. S. Wesley, Zeno’s Paradoxes, Collective Volume, edited
by Wesley C. Salmon, Hackett Publishing Company, Inc., March, 2001.