References

ERGODIC THEORY AND MIXING PROPERTIES


[1] P. R. Halmos, Lectures on Ergodic Theory, First Edition, Chelsea Publishing Company, 1956.

[2] Mark Pollicott and Michiko Yuri, Dynamical Systems and Ergodic Theory, Cambridge University Press, 1998, 179 pages.

[3] H. L. Royden, Real Analysis, Second Edition, MacMillan Company, 1968.

[4] Peter Walters, An Introduction to Ergodic Theory, First Edition, Springer-Verlag, 2000.

[5] L. Boltzmann, Einige allgemeine Satze uber Warmegleichgewicht, Wiener Berichte 63 (1871), 679-711.

[6] D. J. Rudolph, Fundamentals of Measurable Dynamics, Oxford, 1990.

[7] G. D. Birkhoff, Proof of the ergodic theorem, Proc. Nat. Acad. Sci. 17 (1931), 656-660.

[8] J. Von Neumann, Proof of the quasi-ergodic hypothesis, Proc. Nat. Acad. Sci. USA, 18 (1932), 70-82.

[9] Jason Preszler, Ergodic Theory, University of Puget, Sound Math, 2003.

[10] L.-S. Young, Ergodic theory of differentiable dynamical systems, In Real and Complex Dynamical Systems, (Hillerod, 1993), Kluwer (1995), 293-336.

[11] Parry William, Topics in Ergodic Theory, Cambridge University Press, Cambridge, 1981, 124 pages.

[12] H. R. Biswas and M. S. Islam, Ergodic theory of one-dimensional map, Bangladesh J. Sci. Ind. Res. 47(3) (2012), 321-326.

[13] Karl Petersen, Ergodic Theory, First Edition, Cambridge University Press, 1989.

[14] M. V. Jakobson, Ergodic theory of one-dimensional mappings, dynamical systems, ergodic theory and applications, Encyclopedia of Math., Springer, Chapter 9, 100(II) (2000), 234-263.

[15] R. V. Chacon, Weakly mixing transformations which are not strongly mixing, Proc. Amer. Math. Soc. 22 (1969), 559-562.

[16] V. Bergelson, Weakly mixing PET, Ergodic Theory and Dynamical Systems 7 (1987), 337-349.