[1] P. R. Halmos, Lectures on Ergodic Theory, First Edition, Chelsea
Publishing Company, 1956.
[2] Mark Pollicott and Michiko Yuri, Dynamical Systems and Ergodic
Theory, Cambridge University Press, 1998, 179 pages.
[3] H. L. Royden, Real Analysis, Second Edition, MacMillan Company,
1968.
[4] Peter Walters, An Introduction to Ergodic Theory, First Edition,
Springer-Verlag, 2000.
[5] L. Boltzmann, Einige allgemeine Satze uber Warmegleichgewicht,
Wiener Berichte 63 (1871), 679-711.
[6] D. J. Rudolph, Fundamentals of Measurable Dynamics, Oxford,
1990.
[7] G. D. Birkhoff, Proof of the ergodic theorem, Proc. Nat. Acad.
Sci. 17 (1931), 656-660.
[8] J. Von Neumann, Proof of the quasi-ergodic hypothesis, Proc. Nat.
Acad. Sci. USA, 18 (1932), 70-82.
[9] Jason Preszler, Ergodic Theory, University of Puget, Sound Math,
2003.
[10] L.-S. Young, Ergodic theory of differentiable dynamical systems,
In Real and Complex Dynamical Systems, (Hillerod, 1993), Kluwer
(1995), 293-336.
[11] Parry William, Topics in Ergodic Theory, Cambridge University
Press, Cambridge, 1981, 124 pages.
[12] H. R. Biswas and M. S. Islam, Ergodic theory of one-dimensional
map, Bangladesh J. Sci. Ind. Res. 47(3) (2012), 321-326.
[13] Karl Petersen, Ergodic Theory, First Edition, Cambridge
University Press, 1989.
[14] M. V. Jakobson, Ergodic theory of one-dimensional mappings,
dynamical systems, ergodic theory and applications, Encyclopedia of
Math., Springer, Chapter 9, 100(II) (2000), 234-263.
[15] R. V. Chacon, Weakly mixing transformations which are not
strongly mixing, Proc. Amer. Math. Soc. 22 (1969), 559-562.
[16] V. Bergelson, Weakly mixing PET, Ergodic Theory and Dynamical
Systems 7 (1987), 337-349.