References

RATE OF WEAK CONVERGENCE FOR HUBER-DUTTER ESTIMATORS IN A LINEAR MODEL WITH FCA PROCESSES


[1] M. A. Arcones, The Bahadur-Kiefer representation of regression estimayors, Econometric Theory 12 (1996), 257-283.

[2] R. Azrak and G. Melard, Asymptotic properties of quasi-maximum likelihood estimators for ARMA models with time-dependent coefficients, Statistical Inference for Stochastic Processes 9 (2006), 279-330.

[3] F. Carsoule and P. H. Franses, A note on monitoring time-varying parameters in an autoregression, Metrika 57 (2003), 51-62.

[4] P. W. Douglas, Asymptotics of generalized M-estimation of regression and scale with fixed carriers, in an approximately linear model, Statistics & Probability Letters 30 (1996), 271-285.

[5] H. C. Hu, QML estimators in linear regression models with functional coefficient autoregressive processes, Mathematical Problems in Engineering, Volume 2010. Article ID 956907, doi:10.1155/2010/956907, 1-30.

[6] G. H. Kwoun and Y. Yajima, On an autoregressive model with time-dependent coefficients, Annals of the Institute of Statistical Mathematics 35 (1986), 297-309.

[7] R. A. Maller, Asymptotics of regressions with stationary and nonstationary residuals, Stochastic Processes and their Applications 105 (2003), 33-67.

[8] P. Pere, Adjusted estimates and Wald statistics for the AR(1) model with constant, Journal of Econometrics 98 (2000), 335-363.

[9] A. E. Rouner, Asymptotic normality of P-norm estimators in multiple regression, Wahrschrinlichkei-theorie und Verwandte Gebiete 66 (1984), 620-631.

[10] M. J. Silvapulle, Asymptotic behavior of robust estimators of regression and scale parameters with fixed carriers, The Annals of Statistics 13(4) (1985), 1490-1497.

[11] L. Song, H. C. Hu and X. S. Cheng, Hypothesis testing in generalized models with functional coefficient autoregressiver processes, Mathematical Problems in Engineering 2012.

http://dx.doi.org/10.1155/2012/862398

[12] X. W. Tong, H. J. Cui and P. Yu, Consistency and normality of Huber-Dutter estimators for partial linear model, Science in China, Series A: 51(10) (2008), 1831-1842.