References

CNOIDAL WAVE SOLUTIONS IN SHALLOW WATER AND SOLITARY WAVE LIMIT


[1] R. J. Sobey, P. Goodwin, R. J. Thieke and R. J. Westberg, Application of Stokes, cnoidal and Fourier wave theories, J. Waterway Port Coastal and Ocean Eng. 113 (1987), 565-587.

[2] J. D. Fenton, A higher order cnoidal wave theory, J. Fluid Mech. 94 (1979), 129-161.

[3] J. D. Fenton, Nonlinear Wave Theories, The Ocean Engineering Science, Part A, New York, The Sea, 90 (1990).

[4] D. J. Korteweg and G. de Vries, On the change of form of long waves advancing in a rectangular canal and on a new type of long stationary waves, Fhil. Mag. (5) 39 (1895), 422-443.

[5] E. V. Laitone, The second approximation to cnoidal and solitary waves, J. Fluid Mech. 9 (1960), 430-444.

[6] E. V. Laitone, Limiting conditions for cnoidal and Stokes waves, J. Geophys. Res. 67 (1962), 1555-1564.

[7] J. E. Chappelear, Shallow water waves, J. Geophys. Res. 67 (1962), 4693-4704.

[8] Y. Tsuchiya and T. Yasuda, Cnoidal waves in shallow water and their mass transport, Advances in Nonlinear Waves, L. Devnath (ed.), Pitman, (1985), 57-76.

[9] H. Nishimura, M. Isobe and K. Horikawa, Higher order solutions of the Stokes and the cnoidal waves, J. Faculty of Eng., The University of Tokyo 34 (1977), 267-293.

[10] H. Nishimura, M. Isobe and K. Horikawa, Theoretical considerations on perturbation solutions for waves of permanent type, Bull. Faculty of Engng. Yokohama National University 31 (1982), 29-57.

[11] M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions, Dover, New York, 1965.

[12] I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series and Products, Fourth Edition, Academic, 1965.

[13] E. A. Karabut, Higher order approximations of cnoidal wave theory, Journal of Applied Mechanics and Technical Physics 41(1) (2000), 84-94.

[14] Gabor B. Halasz, Higher order corrections for shallow water solitary waves: Elementary derivation and experiments, Eur. J. Phys. 30 (2009), 1311-1323.

[15] C. Hongquie, C. Min and N. Nghiem, Cnoidal wave solutions to Boussinesq systems, IOP Publishing, Nonlinearity 20 (2006), 1443-1461.

[16] J. D. Carter and R. Cienfuegos, The kinematics and stability of solitary and cnoidal wave solutions of the Serre equations, European Journal of Mechanics B: Fluids 30 (2011), 259-268.