References

BARABANOV'S AUXILIARY SYSTEMS FOR A CLASS OF PERTURBED DIFFERENTIAL EQUATIONS


[1] N. E. Barabanov, Stability of differential inclusions, Differential Equations 26(10) (1990), 1817-1818 (in Russian).

[2] F. Colonius and W. Kliemann, Stability Radii and Lyapunov Exponents; in: D. Hinrichsen and B. Martensson (Eds.), Birkhauser, Control of Uncertain Systems (1990), 19-55.

[3] F. Colonius and W. Kliemann, Minimal and maximal Lyapunov exponents of bilinear control systems, J. Differ. Equations 101(2) (1993), 232-275.

[4] A. G. Farhan and H. M. González, Radio de estabilidad real para perturbaciones estructuradas dependientes del tiempo, Ciencias Matemáticas 15(2-3) (1994), 197-212.

[5] H. M. González and R. S. Urquiza, Sobre el radio de estabilidad real de sistemas bidimensionales de ecuaciones difenciales, Ciencias Matemáticas 17(2) (1999), 82-96.

[6] D. Hinrichsen and A. J. Pritchard, Stability radii of linear systems, Systems & Control Letters 7 (1986), 1-10.

[7] D. Hinrichsen and A. J. Pritchard, Stability radius for structured perturbations and the algebraic Riccati equation, Systems & Control Letters 8 (1986), 105-113.

[8] L. Qiu, B. Bernhardsson, A. Rantzer, E. J. Davison, P. M. Young and J. C. Doyle, A formula for computation of the real structured stability radius, Automatica 31 (1995), 879-890.

[9] R. S. Urquiza and H. M. González, Radio de estabilidad real de sistemas bidimensionales para perturbaciones lineales dependientes del tiempo, Extracta Mathematicae 15(3) (2000), 531-545.

[10] R. S. Urquiza and H. M. González, On the distance of a stable matrix to the set of unstable matrices, Ciencias Matemáticas 18(1) (2000), 20-32.