References

NUMERICAL STUDY OF PULSATILE BLOOD FLOW IN THE CORONARY SYSTEM WITH THE RCA BYPASS GRAFT


[1] A. Artoli, J. Jenela and A. Sequeira, A comparative numerical study of a non-Newtonian blood flow model, Proc. IASME/WSEAS Int. Conf. on Continuum Mechanics, Greece, (2006), 91-96.

[2] A. D. Anastasiou, A. S. Spyrogianni, K. C. Koskinas, G. D. Giannoglou and S. V. Paras, Experimental investigation of the flow of a blood analogue fluid in a replica of a bifurcated small artery, Med. Eng. Phys. 34 (2012), 211-218.

[3] A. J. Bryan and G. D. Angelini, The biology of saphenous vein graft occlusion: Etiology and strategles for prevention, Curr. Opin. Cardiol. 9 (1994), 641-649.

[4] A. K. Chanitotis, L. Kaiktsis, D. Katritsis, E. Efstathopoulos, I. Pantos and V. Marmarellis, Computational study of pulsatile blood flow in prototype vessel geometries of coronary segments, Phys. Med. 26 (2010), 140-156.

[5] B. Nuntadilok, B. Wiwatanapataphee, M. Chuedoung and T. Siriapisith, Numerical simulation of blood flow in the system of human coronary arteries with and without bypass graft, Proc. 11th WSEAS Int. Conf. on System Science and Simulation in Engineering, Singapore, (2012), 43-48.

[6] B. Wiwatanapataphee, Modelling of non-Newtonian blood flow through stenosed coronary arteries, Dynamics of Continuous Discrete and Impulsive Systems Series B: Applications & Algorithms 15 (2008), 619-634.

[7] B. Wiwatanapataphee, D. Poltem, Y. H. Wu and Y. Lenbury, Simulation of pulsatile flow of blood in stenosed coronary artery bypass with graft, Math. Biosci. Eng. 3 (2006), 371-383.

[8] B. Wiwatanapataphee, S. Amornsamankul, Y. H. Wu and Y. Lenbury, Non-Newtonian blood flow through stenosed coronary arteries, Proc. 2nd WSEAS Int. Conf. on Applied and Theoretical Mechanics, Italy, (2006), 259-264.

[9] B. Wiwatanapataphee, Y. H. Wu, T. Siriapisith and B. Nuntadilok, Effect of branching on blood flow in the system of human coronary arteries, Math. Biosci. Eng. 9 (2012), 199-214.

[10] C. Bertolotti and V. Delplano, Three-dimensional numerical simulations of flow through a stenosed coronary bypass, J. Biomech. 33 (2000), 1011-1022.

[11] D. Tang, C. Yang, S. Kobayashi and D. N. Ku, Steady flow and wall compression in stenotic arteries: A three-dimensional thick-wall model with fluid-wall interactions, J. Biomech. Eng. 123(2) (2001), 548-557.

[12] E. Boutsianis, H. Dave, T. Frauenfelder, D. Poulikakos, S. Wildermuth, M. Turina, Y. Ventikos and G. Zund, Computational simulation of intracoronary flow based on real coronary geometry, Eur. J. Cardio-Thorac. 26 (2004), 248-256.

[13] E. Shaik, K. A. Hoffmann and J. F. Dietiker, Numerical simulation of pulsatile non-Newtonian flow in an end-to-side anastomosis model, Simul. Model. Pract. Th. 16 (2008), 1123-1135.

[14] J. Chen and X. Y. Lu, Numerical investigation of the non-Newtonian pulsatile blood flow in a bifurcation model with a non-planar branch, J. Biomech. 39 (2006), 818-832.

[15] J. Janela, A. Moura and A. Sequeira, A 3D non-Newtonian fluid-structure interaction model for blood flow in arteries, J. Comput. Appl. Math. 234 (2010), 2783-2791.

[16] J. V. Soulis, G. D. Giannoglou, Y. S. Chatzizisis, K. V. Seralidou, G. E. Parcharidis and G. E. Louridas, Non-Newtonian models for molecular viscosity and wall shear stress in a 3D reconstructed human left coronary artery, Med. Eng. Phys. 30 (2008), 9-19.

[17] N. J. Cheshire and J. H. Wolfe, Infrainguinal graft surveillance: A biased overview, Semin. Vasc. Surg. 6(2) (1993), 143-149.

[18] P. Chuchard, T. Puapansawat, T. Siriapisith, Y. H. Wu and B. Wiwatanapataphee, Numerical simulation of blood flow through the system of coronary arteries with diseased left anterior descending, Int. J. Math. Comput. Simulat. 5(4) (2011), 334-341.

[19] P. Chuchard, T. Puapansawat, T. Siriapisith and B. Wiwatanapataphee, Numerical simulation of blood flow in the system of human coronary arteries with stenosis, Proc. 4th WSEAS Int. Conf. on Finite Differences Finite Elements Finite Volumes Boundary Elements, France, (2011), 59-63.

[20] P. Ruengsakulrach, A. K. Joshi, S. Fremes, J. Butany, S. Foster, B. Wiwatanapataphee and Y. Lenbury, Wall shear stress and atherosclerosis: Numerical blood flow simulations in the mouse aortic arch, Proc. 12th WSEAS Int. Conf. on Applied Mathematics, Egypt, (2007), 199-207.

[21] R. Manimaran, CFD simulation of non-Newtonian fluid flow in arterial stenoses with surface irregularities, WASET 73 (2011), 957-962.

[22] S. I. Bernad, T. Barbat, E. S. Bernad and R. Susan-Resiga, Cardio vascular surgery simulation based medical intervention, Proc. 9th WSEAS Int. Conf. on Mathematics and Computers in Biology and Chemistry, Romania, (2008), 100-106.

[23] S. Sadeghian, M. Navidbakhsh and R. Molaei, Numerical flow analysis in actual model of human coronary, Proc. 3rd WSEAS Int. Conf. on Applied and Theoretical Mechanics, Spain, (2007), 131-135.

[24] S. U. Siddiqui, N. K. Verma, S. Mishra and R. S. Gupta, Mathematical modelling of pulsatile flow of Cassons fluid in arterial stenosis, Appl. Math. Comput. 210 (2009), 1-10.

[25] Y. Papaharilaou, D. J. Doorly and S. J. Sherwin, The influence of out-of-plane geometry on pulsatile flow within a distal end-to-side anastomosis, J. Biomech. 5(9) (2002), 1225-1239.

[26] Cleveland Clinic, Medical management of coronary artery disease. Available:
http://my.clevelandclinic.org/heart/disorders/cad/t reatment medical.aspx

[27] World Health Organization (WHO), Cardiovascular Diseases (CVDs). Available: http://www.who.int/mediacentre/factsheets/fs317/en/