[1] E. Al-Shemas and Stephen C. Billups, An iterative method for
generalized set-valued nonlinear mixed quasi-variational inequalities,
J. Comp. Appl. Math. 170(2) (2004), 423-432.
[2] E. Al-Shemas, Wiener-Hopf equations technique for multivalued
general variational inequalities, J. Adv. Math. Stud. 2(2) (2009),
01-08.
[3] E. Al-Shemas, Projection iterative methods for multivalued general
variational inequalities, Appl. Math. Inform. Sci. 3(2) (2009),
177-184.
[4] E. Al-Shemas, Resolvent operator method for general variational
inclusions, J. Math. Inequal. 3(3) (2009), 4554-4562.
[5] A. Auslender, M. Teboulle and S. Ben-Tiba, A logarithmic-quadratic
proximal method for variational inequalities, Comput. Optim. Appl. 12
(1999), 31-40.
[6] C. Baiocchi and A. Capelo, Variational and Quasi-Variational
Inequalities: Application to Free-Boundary Problems, Wiley, New York,
1984.
[7] L. Bregman, The relaxation method of finding the common points of
convex sets and its applications to the solution of problems in convex
programming, USSR Comput. Math. Math. Phys. 7 (1967), 200-217.
[8] R. S. Burachik, Generalized Proximal Point Methods for the
Variational Inequality Problem, PhD. Thesis, Instituto de
Matemà tica Pura ed Aplcada, Rio de Janeiro, Brazil, 1995.
[9] D. Han and Wenyu Sun, New decomposition methods for solving
variational inequality problems, Math. Comput. Modelling 37 (2003),
405-418.
[10] B. S. He and H. Yang, Some convergence properties of a method of
multipliers for linearly constrained monotone variational
inequalities, Oper. Res. Lett. 23 (1998), 151-161.
[11] B. S. He, H. Yang, L. Z. Liao and D. Han, A decomposition method
for a class of monotone variational inequality problem, Math. Program.
103(3) (1999), 603-622.
[12] B. S. He, H. Yang, L. Z. Liao and D. Han, A new alternating
directions method for monotone variational inequalities, Math.
Program. (2001).
[13] A. N. Iusem and M. Teboulle, Convergence analysis of
non-quadratic proximal methods for convex and linear programming,
Math. Oper. Res. 20(3) (1995), 657-677.
[14] D. Kinderlehrer and G. Stampacchia, An Introduction to
Variational Inequalities and their Application, Academic Press, New
York, 1980.
[15] K. C. Kiwiel, Proximal minimization methods with generalized
Bregman functions, SIAM J. Control and Optim. 35(4) (1997),
1142-1168.
[16] J. L. Lions and G. Stampacchia, Variational inequalities, Comm.
Pure Appl. Math. 20 (1967), 493-519.
[17] P. Marcotte and D. Zhu, Coupling the auxiliary problem principle
with descent methods of pseudoconvex programming, European J. Oper.
Res. 83 (1995), 670-685.
[18] B. Martinet, Regularization d’inequations variationales
par approximations successive, Revue Fran. d’Informat. Rech.
Oper. 4 (1970), 154-159.
[19] M. A. Noor, General variational inequalities, Appl. Math. Lett. 1
(1988), 119-121.
[20] M. A. Noor, K. I. Noor and Th. M. Rassias, Some aspects of
variational inequalities, J. Comput. Appl. Math. 47 (1993),
285-312.
[21] M. A. Noor, Operator-splitting methods for general mixed
variational inequalities, J. Inequal. Pure Appl. Math. 3(5) (2002),
1-9.
[22] M. A. Noor, Some developments in general variational
inequalities, Appl. Math. Comput. 152 (2004), 199-277.
[23] M. A. Noor, Differentiable nonconvex functions and general
variational inequalities, Appl. Math. Comput. 199 (2008), 623-630.
[24] M. A. Noor, Extended general variational inequalities, Appl.
Math. Lett. 22 (2009), 182-186.
[25] R. Polyak and M. Teboulle, Nonlinear re-scaling and proximal-like
methods in convex programming, Math. Program. 76 (1997), 265-284.
[26] R. Polyak, Nonlinear re-scaling multiplier method as interior
quadratic prox, Math. Program. (2003).
[27] R. T. Rockafellar, Augmented Lagrangian and applications of the
proximal point algorithm in convex programming, Math. Oper. Res. 1
(1976), 97-116.
[28] G. Stampacchia, Formes bilineaires coercivities surles ensembles
convex, C. R. Acad. Sci. Paris 258 (1964), 4413-4416.