References

BEHAVIOUR OF THE NUMERICAL QUENCHING TIME WITH A POTENTIAL AND GENERAL NONLINEARITIES


[1] L. M. Abia, J. C. López-Marcos and J. Martínez, On the blow-up time convergence of semi-discretizations of reaction-diffusion equations, Appl. Numer. Math. 26 (1998), 399-414.

[2] A. Acker and W. Walter, The quenching problem for nonlinear parabolic differential equations, Lecture Notes in Math., Springer-Verlag, New York, 564 (1976), 1-12.

[3] A. Acker and B. Kawohl, Remarks on quenching, Nonl. Anal. TMA 13 (1989), 53-61.

[4] C. Bandle and C. M. Braumer, Singular perturbation method in a parabolic problem with free boundary, in Proc. BAIL IVth Conference, Boole Press Conf. Ser. 8, Novosibirsk (1986), 7-14.

[5] P. Baras and L. Cohen, Complete blow-up after for the solution of a semilinear heat equation, J. Funct. Anal. 71 (1987), 142-174.

[6] T. K. Boni, On quenching of solutions for some semilinear parabolic equations of second order, Bull. Belg. Math. Soc. 7 (2000), 73-95.

[7] T. K. Boni, Extinction for discretizations of some semilinear parabolic equations, C. R. Acad. Sci. Paris, Sér. I 333 (2001), 795-800.

[8] C. Cortazar, M. del Pino and M. Elgueta, On the blow-up set for Indiana Univ. Math. J. 47 (1998), 541-561.

[9] C. Cortazar, M. del Pino and M. Elgueta, Uniqueness and stability of regional blow-up in a porous-medium equation, Ann. Inst. H. Poincaré Anal. Non Linéaire 19 (2002), 927-960.

[10] K. Deng and H. A. Levine, On the blow-up of at quenching, Proc. Amer. Math. Soc. 106 (1989), 1049-1056.

[11] K. Deng and M. Xu, Quenching for a nonlinear diffusion equation with singular boundary condition, Z. Angew. Math. Phys. 50 (1999), 574-584.

[12] C. Fermanian Kammerer, F. Merle and H. Zaag, Stability of the blow-up profile of nonlinear heat equations from the dynamical system point of view, Math. Ann. 317 (2000), 195-237.

[13] M. Fila, B. Kawohl and H. A. Levine, Quenching for quasilinear equations, Comm. Part. Diff. Equat. 17 (1992), 593-614.

[14] M. Fila and H. A. Levine, Quenching on the boundary, Nonl. Anal. TMA 21 (1993), 795-802.

[15] A. Friedman and B. Mcleod, Blow-up of positive solutions of nonlinear heat equations, Indiana Univ. Math. J. 34 (1985), 425-477.

[16] V. A. Galaktionov, S. P. KMiklhailov and A. A. Samarskii, Unbounded solutions of the Cauchy problem for the parabolic equation Soviet Phys. Dokl. 25 (1980), 458-459.

[17] V. A. Galaktionov, Boundary value problems for the nonlinear parabolic equation Differ. Equat. 17 (1981), 551-555.

[18] V. Galaktionov and J. L. Vazquez, Continuation of blow-up solutions of nonlinear heat equations in several space dimensions, Comm. Pure Appl. Math. 50 (1997), 1-67.

[19] V. Galaktionov and J. L. Vazquez, The problem of blow-up in nonlinear parabolic equation, current developments in PDE (Temuco, 1999), Discrete Contin. Dyn. Syst. 8 (2002), 399-433.

[20] P. Groisman, J. D. Rossi and H. Zaag, On the dependence of the blow-up time with respect to the initial data in a semilinear parabolic problem, Comm. Part. Diff. Equat. 28 (2003), 737-744.

[21] P. Groisman and J. D. Rossi, Dependence of the blow-up time with respect to parameters and numerical approximations for a parabolic problem, Asympt. Anal. 37 (2004), 79-91.

[22] J. Guo, On a quenching problem with Robin boundary condition, Nonl. Anal. TMA 17 (1991), 803-809.

[23] M. A. Herreros and J. L. Vazquez, Generic behaviour of one-dimensional blow up patterns, Ann. Scuola. Norm. Sup. Pisa Cl. Sci. 19 (1992), 381-450.

[24] H. Kawarada, On solutions of initial-boundary problem for Pul. Res. Inst. Math. Sci. 10 (1975), 729-736.

[25] C. M. Kirk and C. A. Roberts, A review of quenching results in the context of nonlinear Volterra equations, Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal. 10 (2003), 343-356.

[26] A. Ladyzenskaya, V. A. Solonnikov and N. N. Ural’ceva, Linear and quasilinear equations parabolic type, Trans. Math. Monogr., 23 AMS, Providence, RI, 1968.

[27] H. A. Levine, The quenching of solutions of linear parabolic and hyperbolic equations with nonlinear boundary conditions, SIAM J. Math. Anal. 14 (1983), 1139-1152.

[28] H. A. Levine, The phenomenon of quenching : A survey, in Trends in the Theory and Practice of Nonlinear Analysis, Amsterdam, North-Holland, (1985), 275-286.

[29] H. A. Levine, Quenching, nonquenching and beyond quenching for solution of some parabolic equations, Ann. Math. Pure Appl. 155 (1989), 243-260.

[30] F. Merle, Solution of a nonlinear heat equation with arbitrarily given blow-up points, Comm. Pure Appl. Math. 45 (1992), 293-300.

[31] T. Nakagawa, Blowing up on the finite difference solution to Appl. Math. Optim. 2 (1976), 337-350.

[32] D. Nabongo and T. K. Boni, Quenching time for some nonlinear parabolic equations, An. St. Univ. Ovidius Constanta 16 (2008), 87-102.

[33] D. Phillips, Existence of solution of quenching problems, Appl. Anal. 24 (1987), 253-264.

[34] M. H. Protter and H. F. Weinberger, Maximum principles in differential equations, Prentice Hall, Englewood Cliffs, NJ, 1967.

[35] P. Quittner, Continuity of the blow-up time and a priori bounds for solutions in superlinear parabolic problems, Houston J. Math. 29(3) (2003), 757-799 (electronic).

[36] Q. Shang and A. Q. M. Khaliq, A compound adaptive approach to degenerate nonlinear quenching problems, Numer. Methods Partial Differential Equations 15 (1999), 29-47.

[37] W. Walter, Differential-und Integral-Ungleichungen, Springer, Berlin, 1964.