References

MESHLESS SOLUTIONS OF 2D UNILATERAL CONTACT PROBLEMS BY PENALITY AND MOVING LEAST SQUARE APPROACH


[1] T. Belytschko, Y. Y. Lu and L. Gu, Element-free Galerkin methods, Inter. J. Numer. Methods Engg. 37 (1994), 229-256.

[2] T. Belytschko, Y. Y. Lu, L. Gu and M. Tabbara, Element-free Galerkin methods for static and dynamic fracture, Inter. J. Solids Struct. 32 (1995), 2547-2570.

[3] T. Belytschko, Y. Krongauz, D. Organ, M. Fleming and P. Krysl, Meshless methods: An overview and recent developments, Comput. Methods Appl. Mech. Engg. 139 (1996), 3-47.

[4] M. Chehel Amirani and N. Nemati, Simulation of two dimensional unilateral contact using a coupled FE/EFG method, Engineering Analysis with Boundary Elements.

[5] M. Dehghan and D. Mirzaei, Meshless local Petrov-Galerkin (MLPG) method for the unsteady magnetohydrodynamic (MHD) flow through pipe with arbitrary wall conductivity, Appl. Numer. Math. 59 (2009), 1043-1058.

[6] C. A. Duarte, The HP-Cloud Method, PhD. Thesis, The University of Texas at Austin, 1996.

[7] G. Duvaut and J. L. Lions, Les Inégalités Variationnelles en Mécanique et en Physique, Dunod, Paris, 1972.

[8] G. Duvaut, Equilibre d’un solide élastique avec contact unilatéral et frottement, C. R. Acad. Sci., Paris I, Math. 290 (1980), 1075-1093.

[9] T.-P. Fries and H.-G. Matthies, Classification and Overview of Meshfree Methods, Institute of Scientific Computing, Technical University Braunschweig: Brunswick, Germany, 2004.

[10] P. Hild and P. Laborde, Quadratic finite element methods for unilateral contact problems, Appl. Numer. Math. 41 (2002), 401-421.

[11] D. A. Hu, S. Y. Long, X. Han and G. Y. Li, A meshless local Petrov-Galerkin method for large deformation contact analysis of elastomers, Engg. Anal. Bound. Elem. 31 (2007), 657-666.

[12] R. El Jid and H. F. Fassi, A meshless (EFG) approach for linear elasticity and numerical comparison with the finite element method, Inter. J. Engg. Sci. Tech. (2011), 6593-6599.

[13] W. Ju and R. L. Taylor, A perturbed Lagrange formulation for the finite element solution of nonlinear frictional contact problems, J. Theo. Appl. Mech. 7 (1988), 1-14.

[14] N. Kikuchi and J. T. Oden, Contact Problems in Elasticity, SIAM Philadelphia, 1988.

[15] K. C. Kwon and S. K. Youn, The least-squares meshfree method for rigid-plasticity with frictional contact, Int. J. Solids Struct. 43 (2006), 7450-7481.

[16] P. Lancaster and K. Salkauskas, Surface generated by moving least squares method, Math. Comput. 37 (1981), 141-158.

[17] Y. Li, G. R. Liu, M. T. Luan, K. Y. Dai, Z. H. Zhong and G. Y. Li et al., Contact analysis for solids based on linearly conforming radial point interpolation method, Comp. Mech. 39 (2007), 537-554.

[18] Y. Y. Lu, T. Belytschko and L. Gu, A new implementation of the element free Galerkin, Comput. Methods Appl. Mech. Engg. 113 (1994), 397-414.

[19] D. Mirzaei and M. Dehghan, Implementation of meshless LBIE method to the 2D nonlinear SG problem, Inter. J. Numer. Methods Engg. 79 (2009), 1662-1682.

[20] Y. X. Mukherjee and S. Mukherjee, The boundary node method for potential problems, Inter. J. Numer. Methods Engg. 40 (1997), 797-815.

[21] D. Peric and D. R. J. Owen, Computational model for contact problems with friction based on the penalty method, Inter. J. Numer. Methods Engg. 35 (1992), 1289-1309.

[22] D. Peric and D. R. J. Owen, Computational model for contact problems with friction based on the penalty method, Inter. J. Numer. Methods Engg. 36 (1992), 1289-309.

[23] N. Vinh Phu, T. Rabczuk, S. Bordas and M. Duflot, Meshless methods: A review and computer implementation aspects, Math. Comp. Simul. (2008).

[24] D. Shepard, A two-dimensional interpolation function for irregularly spaced points, Proc. 23rd Nat. Conf. ACM, ACM Press, New York, (1968), 517-524.

[25] J. C. Simo and T. A. Laursen, An augmented Lagrangian treatment of contact problems involving friction, Comput. and Struct. 42 (1992), 97-116.

[26] J. Sladek, V. Sladek and S. N. Atluri, Local boundary integral equation (LBIE) method for solving problem of elasticity with nonhomogeneous material properties, Comput. Mech. 24 (2000), 456-462.

[27] C. Tiago and P. M. Pimenta, An EFG method for the nonlinear analysis of plates undergoing arbitrarily large deformations, Engineering Analysis with Boundary Elements (2008).

[28] L. Wang, On the duality methods for the contact problem in elasticity, Comput. Methods Appl. Mech. Engg. 167 (1998), 275-282.

[29] P. Wriggers, Computational Contact Mechanics, 2nd Edition, Springer, 2006.

[30] T. Zhu, J. D. Zhang and S. N. Atluri, A local boundary integral equation (LBIE) method in computational mechanics and a meshless discretization approach, Comput. Mech. 21 (1998), 223-235.