[1] T. Belytschko, Y. Y. Lu and L. Gu, Element-free Galerkin methods,
Inter. J. Numer. Methods Engg. 37 (1994), 229-256.
[2] T. Belytschko, Y. Y. Lu, L. Gu and M. Tabbara, Element-free
Galerkin methods for static and dynamic fracture, Inter. J. Solids
Struct. 32 (1995), 2547-2570.
[3] T. Belytschko, Y. Krongauz, D. Organ, M. Fleming and P. Krysl,
Meshless methods: An overview and recent developments, Comput. Methods
Appl. Mech. Engg. 139 (1996), 3-47.
[4] M. Chehel Amirani and N. Nemati, Simulation of two dimensional
unilateral contact using a coupled FE/EFG method, Engineering
Analysis with Boundary Elements.
[5] M. Dehghan and D. Mirzaei, Meshless local Petrov-Galerkin (MLPG)
method for the unsteady magnetohydrodynamic (MHD) flow through pipe
with arbitrary wall conductivity, Appl. Numer. Math. 59 (2009),
1043-1058.
[6] C. A. Duarte, The HP-Cloud Method, PhD. Thesis, The University of
Texas at Austin, 1996.
[7] G. Duvaut and J. L. Lions, Les Inégalités Variationnelles en
Mécanique et en Physique, Dunod, Paris, 1972.
[8] G. Duvaut, Equilibre d’un solide élastique avec contact
unilatéral et frottement, C. R. Acad. Sci., Paris I, Math. 290
(1980), 1075-1093.
[9] T.-P. Fries and H.-G. Matthies, Classification and Overview of
Meshfree Methods, Institute of Scientific Computing, Technical
University Braunschweig: Brunswick, Germany, 2004.
[10] P. Hild and P. Laborde, Quadratic finite element methods for
unilateral contact problems, Appl. Numer. Math. 41 (2002), 401-421.
[11] D. A. Hu, S. Y. Long, X. Han and G. Y. Li, A meshless local
Petrov-Galerkin method for large deformation contact analysis of
elastomers, Engg. Anal. Bound. Elem. 31 (2007), 657-666.
[12] R. El Jid and H. F. Fassi, A meshless (EFG) approach for linear
elasticity and numerical comparison with the finite element method,
Inter. J. Engg. Sci. Tech. (2011), 6593-6599.
[13] W. Ju and R. L. Taylor, A perturbed Lagrange formulation for the
finite element solution of nonlinear frictional contact problems, J.
Theo. Appl. Mech. 7 (1988), 1-14.
[14] N. Kikuchi and J. T. Oden, Contact Problems in Elasticity, SIAM
Philadelphia, 1988.
[15] K. C. Kwon and S. K. Youn, The least-squares meshfree method for
rigid-plasticity with frictional contact, Int. J. Solids Struct. 43
(2006), 7450-7481.
[16] P. Lancaster and K. Salkauskas, Surface generated by moving least
squares method, Math. Comput. 37 (1981), 141-158.
[17] Y. Li, G. R. Liu, M. T. Luan, K. Y. Dai, Z. H. Zhong and G. Y. Li
et al., Contact analysis for solids based on linearly conforming
radial point interpolation method, Comp. Mech. 39 (2007), 537-554.
[18] Y. Y. Lu, T. Belytschko and L. Gu, A new implementation of the
element free Galerkin, Comput. Methods Appl. Mech. Engg. 113 (1994),
397-414.
[19] D. Mirzaei and M. Dehghan, Implementation of meshless LBIE method
to the 2D nonlinear SG problem, Inter. J. Numer. Methods Engg. 79
(2009), 1662-1682.
[20] Y. X. Mukherjee and S. Mukherjee, The boundary node method for
potential problems, Inter. J. Numer. Methods Engg. 40 (1997),
797-815.
[21] D. Peric and D. R. J. Owen, Computational model for contact
problems with friction based on the penalty method, Inter. J. Numer.
Methods Engg. 35 (1992), 1289-1309.
[22] D. Peric and D. R. J. Owen, Computational model for contact
problems with friction based on the penalty method, Inter. J. Numer.
Methods Engg. 36 (1992), 1289-309.
[23] N. Vinh Phu, T. Rabczuk, S. Bordas and M. Duflot, Meshless
methods: A review and computer implementation aspects, Math. Comp.
Simul. (2008).
[24] D. Shepard, A two-dimensional interpolation function for
irregularly spaced points, Proc. 23rd Nat. Conf. ACM, ACM Press, New
York, (1968), 517-524.
[25] J. C. Simo and T. A. Laursen, An augmented Lagrangian treatment
of contact problems involving friction, Comput. and Struct. 42 (1992),
97-116.
[26] J. Sladek, V. Sladek and S. N. Atluri, Local boundary integral
equation (LBIE) method for solving problem of elasticity with
nonhomogeneous material properties, Comput. Mech. 24 (2000),
456-462.
[27] C. Tiago and P. M. Pimenta, An EFG method for the nonlinear
analysis of plates undergoing arbitrarily large deformations,
Engineering Analysis with Boundary Elements (2008).
[28] L. Wang, On the duality methods for the contact problem in
elasticity, Comput. Methods Appl. Mech. Engg. 167 (1998), 275-282.
[29] P. Wriggers, Computational Contact Mechanics, 2nd Edition,
Springer, 2006.
[30] T. Zhu, J. D. Zhang and S. N. Atluri, A local boundary integral
equation (LBIE) method in computational mechanics and a meshless
discretization approach, Comput. Mech. 21 (1998), 223-235.