[1] J. A. Antonino and Salvador Romaguera, Strong differential
subordination to Briot-Bouquet differential equation, J. Differential
Equations 114 (1994), 101-105.
[2] S. S. Miller and P. T. Mocanu, Differential subordinations and
univalent functions, Michigan Math. J. 28(2) (1981), 157-171.
[3] S. S. Miller and P. T. Mocanu, On some classes of first-order
differential subordinations, Michigan Math. J. 32(2) (1985),
185-195.
[4] S. S. Miller and P. T. Mocanu, Differential Subordinations: Theory
and Applications, Pure and Applied Mathematics, No. 225, Marcel
Dekker, New York, 2000.
[5] S. S. Miller and B. T. Mocanu, Subordinations of differential
superordinations, Complex Variables 48(10) (2003), 815-826.
[6] G. I. Oros, Strong differential superordination, Acta
Universitatis Apulensis 19 (2009), 101-106.
[7] G. I. Oros, Briot-Bouquet strong differential superordinations and
sandwich theorems, Math. Reports 12(62), 3 (2010), 277-283.
[8] G. I. Oros, An application of the subordination chains, Fractional
Calculus & Applied Analysis 13(5) (2010), 521-530.
[9] S. Owa, On the distortion theorems- I, Kyungpook. Math. J. 18
(1978), 53-59.
[10] R. K. Raina and H. M. Srivastava, A certain subclass of analytic
functions associated with operators of fractional calculus, Computers
& Mathematics with Applications 32 (1996), 13-19.
[11] H. M. Srivastava and P. M. Karlsson, Multiple Gaussian
Hypergeometric Series, Halsted Press (Ellis Horwood Limited,
Chichester), Wiley, New York/ Chichester/ Brishane/ Toronto, 1985.