References

STRONG DIFFERENTIAL SUPERORDINATION DEFINED BY FRACTIONAL DERIVATIVE OPERATOR


[1] J. A. Antonino and Salvador Romaguera, Strong differential subordination to Briot-Bouquet differential equation, J. Differential Equations 114 (1994), 101-105.

[2] S. S. Miller and P. T. Mocanu, Differential subordinations and univalent functions, Michigan Math. J. 28(2) (1981), 157-171.

[3] S. S. Miller and P. T. Mocanu, On some classes of first-order differential subordinations, Michigan Math. J. 32(2) (1985), 185-195.

[4] S. S. Miller and P. T. Mocanu, Differential Subordinations: Theory and Applications, Pure and Applied Mathematics, No. 225, Marcel Dekker, New York, 2000.

[5] S. S. Miller and B. T. Mocanu, Subordinations of differential superordinations, Complex Variables 48(10) (2003), 815-826.

[6] G. I. Oros, Strong differential superordination, Acta Universitatis Apulensis 19 (2009), 101-106.

[7] G. I. Oros, Briot-Bouquet strong differential superordinations and sandwich theorems, Math. Reports 12(62), 3 (2010), 277-283.

[8] G. I. Oros, An application of the subordination chains, Fractional Calculus & Applied Analysis 13(5) (2010), 521-530.

[9] S. Owa, On the distortion theorems- I, Kyungpook. Math. J. 18 (1978), 53-59.

[10] R. K. Raina and H. M. Srivastava, A certain subclass of analytic functions associated with operators of fractional calculus, Computers & Mathematics with Applications 32 (1996), 13-19.

[11] H. M. Srivastava and P. M. Karlsson, Multiple Gaussian Hypergeometric Series, Halsted Press (Ellis Horwood Limited, Chichester), Wiley, New York/ Chichester/ Brishane/ Toronto, 1985.