[1] N. Akhmediev, V. Eleonsky and N. Kulagin, Generation of periodic
trains of picosecond pulses in an optical fiber: Exact solutions, Sov.
Phys. J.E.T.P. 62 (1985), 894-899.
[2] N. Akhmediev, V. Eleonskii and N. Kulagin, Exact first order
solutions of the nonlinear Schrödinger equation, Th. Math. Phys.
72(2) (1987), 183-196.
[3] N. Akhmediev, A. Ankiewicz and J. M. Soto-Crespo, Rogue waves and
rational solutions of nonlinear Schrödinger equation, Physical
Review E 80(026601) (2009).
[4] N. Akhmediev, A. Ankiewicz and P. A. Clarkson, Rogue waves,
rational solutions, the patterns of their zeros and integral
relations, J. Phys. A: Math. Theor. 43(122002) (2010), 1-9.
[5] E. D. Belokolos, A. I. Bobenko, A. R. Its, V. Z. Enolskij and V.
B. Matveev, Algebro-geometric Approach to Nonlinear Integrable
Equations, Springer Series in Nonlinear Dynamics, Springer Verlag,
(1994), 1-360.
[6] P. Dubard, P. Gaillard, C. Klein and V. B. Matveev, On multi-rogue
waves solutions of the NLS equation and positon solutions of the KdV
equation, Eur. Phys. J. Special Topics 185 (2010), 247-258.
[7] P. Dubard and V. B. Matveev, Multi-rogue waves solutions of the
focusing NLS equation and the KP-I equation, Nat. Hazards Earth Syst.
Sci. 11 (2011), 667-672.
[8] V. Eleonskii, I. Krichever and N. Kulagin, Rational multisoliton
solutions to the NLS equation, Soviet Doklady 1986 Sect. Math. Phys.
287 (1986), 606-610.
[9] A. R. Its, A. V. Rybin and M. A. Salle, Exact integration of
nonlinear Schrödinger equation, Teore. i Mat. Fiz. 74(1) (1988),
29-45.
[10] V. B. Matveev and M. A. Salle, Darboux Transformations and
Solitons, Series in Nonlinear Dynamics, Springer Verlag, Berlin,
1991.
[11] D. Peregrine, Water waves, nonlinear Schrödinger equations and
their solutions, J. Austral. Math. Soc. Ser. B 25 (1983), 16-43.
[12] V. E. Zakharov, Stability of periodic waves of finite amplitude
on the surface of a deep fluid, J. Appl. Mech. Tech. Phys. 9(2)
(1969), 190-194.