References

ON THE LONG-RUN EQUILIBRIA OF A CLASS OF LARGE SUPERGAMES ON


[1] M. Aizenman, Translation invariance and instability of phase coexistence in two dimensional Ising system, Commun. Math. Phys. 73(1) (1980), 83-94.

[2] L. Blouce, The statistical mechanics of best-response strategy revision process, Games and Economic Behaviour 11(2) (1995), 111-145.

[3] J. W. Friedman, Game Theory with Applications to Economics, Oxford University Press, New York, 1986.

[4] A. Georges and P. L. Doussal, From equilibrium spin models to probabilistic cellular automata, J. Stst. Phys. 54 (1989), 1011-1064.

[5] H.-O. Georgi, Gibbs Measures and Phase Transitions, Walter de Gruyter, Berlin, New York, 1988.

[6] I. Gilboa, E. Kalai and E. Zemel, On the order of eliminating dominated strategies, Operations Research Letters 9(2) (1990), 85-89.

[7] E. Kalai and E. Lehrer, Rational learning leads to Nash equilibrium, Econometrica 61(5) (1993), 1019-1045.

[8] E. Kalai and E. Lehrer, Subjective equilibrium in repeated games, Econometrica 61(5) (1993), 1231-1240.

[9] R. Kinderman and J. L. Snell, Markov Random Fields and their Applications, American Mathematical Society (AMS) Providence Rhode Island, 1980.

[10] J. L. Lebowtiz, C. Maes and E. R. Speer, Statistical mechanics of probabilistic cellular automata, J. Stst. Phys. 39 (1990), 117-170.

[11] J. L. Marroquin and A. Rumirez, Stochastic cellular automata with Gibbsian invariant measures, IEEE Trans. Vol-It 37(3) (1991), 541-551.