References

ON THE HIGHER RANK NUMERICAL RANGE OF THE SHIFT OPERATOR


[1] C. Badea and G. Cassier, Constrained von Neumann inequalities, Adv. Math. 166(2) (2002), 260-297.

[2] H. Bercovici, Numerical ranges of operators of class Linear and Multilinear Algebra 50(3) (2002), 219-222.

[3] A. Böttcher and S. Grudsky, Spectral Properties of Banded Toeplitz Matrices, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2005.

[4] M.-D. Choi, D. W. Kribs and K. Zyczkowski, Quantum error correcting codes from the compression formalism, Rep. Math. Phys. 58 (2006), 77-91.

[5] M.-D. Choi, D. W. Kribs and K. Zyczkowski, Higher-rank numerical ranges and compression problems, Linear Algebra Appl. 418 (2006), 828-839.

[6] M.-D. Choi, J. A. Holbrook, D. W. Kribs and K. Zyczkowski, Higher-rank numerical ranges of unitary and normal matrices, Operators and Matrices 1 (2007), 409-426.

[7] M.-D. Choi, M. Giesinger, J. A. Holbrook and D. W. Kribs, Geometry of higher-rank numerical ranges, Linear and Multilinear Algebra 56 (2008), 53-64.

[8] H. Gaaya, On the numerical radius of the truncated adjoint shift, to appear.

[9] H. L. Gau, C.-K. Li and P. Y. Wu, Higher-rank numerical ranges and dilations, J. Operator Theory, in press.

[10] U. Grenander and G. Szegö, Toeplitz Forms and their Applications, California Monographs in Mathematical Sciences, University of California Press, Berkeley-Los Angeles, 1958.

[11] U. Haagerup and P. de la Harpe, The numerical radius of a nilpotent operator on a Hilbert space, Proc. Amer. Math. Soc. 115 (1992), 371-379.

[12] P. R. Halmos, A Hilbert Space Problem Book, 2nd Edition, Springer-Verlag, New York, 1982.

[13] P. Lancaster and L. Rodman, Algebraic Riccati Equations, Oxford Science Publications, The Clarendon Press, Oxford University Press, New York, 1995.

[14] C.-K. Li, A simple proof of the elliptical range theorem, Proc. Amer. Math. Soc. 124 (1996), 1985-1986.

[15] C.-K. Li, Y. T. Poon and N.-S. Sze, Higher rank numerical ranges and low rank perturbations of quantum channels, preprint.
http://arxiv.org/abs/0710.2898

[16] C.-K. Li, Y. T. Poon and N.-S. Sze, Condition for the higher rank numerical range to be non-empty, Linear and Multilinear Algebra, to appear.

[17] C.-K. Li and N.-S. Sze, Canonical forms, higher rank numerical ranges, totally isotropic subspaces, and matrix equations, Proc. Amer. Math. Soc. 136(9) (2008), 3013-3023.

[18] C. Pop, On a result of Haagerup and de la Harpe, Rev. Roumaine Math. Pures Appl. 43(9-10) (1998), 869-871.

[19] G. W. Stewart and J.-G. Sun, Matrix Perturbation Theory, Academic Press, New York, 1990.

[20] C. Foias Sz.-Nagy, Harmonic Analysis of Operators on Hilbert Space, Amsterdam, North Holland, 1970.

[21] H. Woerdeman, The higher rank numerical range is convex, Linear and Multilinear Algebra 56 (2008), 65-67.