[1] C. Badea and G. Cassier, Constrained von Neumann inequalities,
Adv. Math. 166(2) (2002), 260-297.
[2] H. Bercovici, Numerical ranges of operators of class Linear and Multilinear Algebra 50(3)
(2002), 219-222.
[3] A. Böttcher and S. Grudsky, Spectral Properties of Banded
Toeplitz Matrices, Society for Industrial and Applied Mathematics
(SIAM), Philadelphia, PA, 2005.
[4] M.-D. Choi, D. W. Kribs and K. Zyczkowski, Quantum error
correcting codes from the compression formalism, Rep. Math. Phys. 58
(2006), 77-91.
[5] M.-D. Choi, D. W. Kribs and K. Zyczkowski, Higher-rank numerical
ranges and compression problems, Linear Algebra Appl. 418 (2006),
828-839.
[6] M.-D. Choi, J. A. Holbrook, D. W. Kribs and K. Zyczkowski,
Higher-rank numerical ranges of unitary and normal matrices, Operators
and Matrices 1 (2007), 409-426.
[7] M.-D. Choi, M. Giesinger, J. A. Holbrook and D. W. Kribs, Geometry
of higher-rank numerical ranges, Linear and Multilinear Algebra 56
(2008), 53-64.
[8] H. Gaaya, On the numerical radius of the truncated adjoint shift,
to appear.
[9] H. L. Gau, C.-K. Li and P. Y. Wu, Higher-rank numerical ranges and
dilations, J. Operator Theory, in press.
[10] U. Grenander and G. Szegö, Toeplitz Forms and their
Applications, California Monographs in Mathematical Sciences,
University of California Press, Berkeley-Los Angeles, 1958.
[11] U. Haagerup and P. de la Harpe, The numerical radius of a
nilpotent operator on a Hilbert space, Proc. Amer. Math. Soc. 115
(1992), 371-379.
[12] P. R. Halmos, A Hilbert Space Problem Book, 2nd Edition,
Springer-Verlag, New York, 1982.
[13] P. Lancaster and L. Rodman, Algebraic Riccati Equations, Oxford
Science Publications, The Clarendon Press, Oxford University Press,
New York, 1995.
[14] C.-K. Li, A simple proof of the elliptical range theorem, Proc.
Amer. Math. Soc. 124 (1996), 1985-1986.
[15] C.-K. Li, Y. T. Poon and N.-S. Sze, Higher rank numerical ranges
and low rank perturbations of quantum channels, preprint.
http://arxiv.org/abs/0710.2898
[16] C.-K. Li, Y. T. Poon and N.-S. Sze, Condition for the higher rank
numerical range to be non-empty, Linear and Multilinear Algebra, to
appear.
[17] C.-K. Li and N.-S. Sze, Canonical forms, higher rank numerical
ranges, totally isotropic subspaces, and matrix equations, Proc. Amer.
Math. Soc. 136(9) (2008), 3013-3023.
[18] C. Pop, On a result of Haagerup and de la Harpe, Rev. Roumaine
Math. Pures Appl. 43(9-10) (1998), 869-871.
[19] G. W. Stewart and J.-G. Sun, Matrix Perturbation Theory, Academic
Press, New York, 1990.
[20] C. Foias Sz.-Nagy, Harmonic Analysis of Operators on Hilbert
Space, Amsterdam, North Holland, 1970.
[21] H. Woerdeman, The higher rank numerical range is convex, Linear
and Multilinear Algebra 56 (2008), 65-67.