References

TOPOLOGICAL INVARIANTS IN DIGITAL IMAGES


[1] H. Arslan, I. Karaca and A. Öztel, Homology groups of n-dimensional digital images, XXI, Turkish National Mathematics Symposium (2008), B1-13.

[2] G. Bertrand, Some points, topological numbers and geodesic neighborhoods in cubic grids, Pattern Recognition Letters 15 (1994), 1003-1011.

[3] G. Bertrand and R. Malgouyres, Some topological properties of discrete surfaces, Journal of Mathematical Imaging and Vision 11 (1999), 207-211.

[4] L. Boxer, Digitally continuous functions, Pattern Recognition Letters 15 (1994), 833-839.

[5] L. Boxer, A classical construction for the digital fundamental group, Journal of Mathematical Imaging and Vision 10 (1999), 51-62.

[6] L. Boxer, Properties of digital homotopy, Journal of Mathematical Imaging and Vision 22 (2005), 19-26.

[7] L. Boxer, Homotopy properties of sphere-like digital images, Journal of Mathematical Imaging and Vision 24 (2006), 167-175.

[8] L. Boxer, Digital products, wedges, and covering spaces, Journal of Mathematical Imaging and Vision 25 (2006), 169-171.

[9] L. Boxer and I. Karaca, The classification of digital covering spaces, Journal of Mathematical Imaging and Vision 32 (2008), 23-29.

[10] L. Chen, Gradually varied surfaces and its optimal uniform approximation, SPIE Proceedings 2182 (1994), 300-307.

[11] L. Chen, Discrete Surfaces and Manifolds, Scientific & Practical Computing, Rockville, MD, 2004.

[12] L. Chen and Y. Rong, Linear time recognition algorithms for topological invariants in 3D, Proceedings of International Conference on Pattern Recognition, 2008.

[13] S. E. Han, On the classification of the digital images up to digital homotopy equivalence, Journal of Computer and Communications Research 10 (2000), 207-216.

[14] S. E. Han, Non-product property of the digital fundamental group, Information Sciences 171 (2005), 73-91.

[15] S. E. Han, Connected sum of digital closed surfaces, Information Sciences 176 (2006), 332-348.

[16] S. E. Han, Digital fundamental group and Euler characteristic of a connected sum of digital closed surfaces, Information Sciences 177(16) (2007), 3314-3326.

[17] G. T. Herman, Oriented surfaces in digital spaces, CVGIP: Graphical Models and Image Processing 55 (1993), 381-396.

[18] T. Kacynski, K. Mischaikow and M. Mrozek, Computational Homology, Springer-Verlag, New York, 2010.

[19] T. Y. Kong, A digital fundamental group, Computers and Graphics 13 (1989), 159-166.

[20] R. Malgouyres and G. Bertrand, A new local property of strong n-surfaces, Pattern Recognition Letters 20 (1999), 417-428.

[21] A. Rosenfeld, Digital topology, American Mathematical Monthly 86 (1979), 76-87.

[22] A. Rosenfeld, Continuous functions on digital pictures, Pattern Recognition Letters 4 (1986), 177-184.

[23] Joseph J. Rotman, An Introduction to Algebraic Topology, Springer-Verlag, New York, 1998.

[24] Edwin H. Spanier, Algebraic Topology, Springer-Verlag, New York, 1966.