[1] H. Arslan, I. Karaca and A. Öztel, Homology groups of
n-dimensional digital images, XXI, Turkish National
Mathematics Symposium (2008), B1-13.
[2] G. Bertrand, Some points, topological numbers and geodesic
neighborhoods in cubic grids, Pattern Recognition Letters 15 (1994),
1003-1011.
[3] G. Bertrand and R. Malgouyres, Some topological properties of
discrete surfaces, Journal of Mathematical Imaging and Vision 11
(1999), 207-211.
[4] L. Boxer, Digitally continuous functions, Pattern Recognition
Letters 15 (1994), 833-839.
[5] L. Boxer, A classical construction for the digital fundamental
group, Journal of Mathematical Imaging and Vision 10 (1999), 51-62.
[6] L. Boxer, Properties of digital homotopy, Journal of Mathematical
Imaging and Vision 22 (2005), 19-26.
[7] L. Boxer, Homotopy properties of sphere-like digital images,
Journal of Mathematical Imaging and Vision 24 (2006), 167-175.
[8] L. Boxer, Digital products, wedges, and covering spaces, Journal
of Mathematical Imaging and Vision 25 (2006), 169-171.
[9] L. Boxer and I. Karaca, The classification of digital covering
spaces, Journal of Mathematical Imaging and Vision 32 (2008),
23-29.
[10] L. Chen, Gradually varied surfaces and its optimal uniform
approximation, SPIE Proceedings 2182 (1994), 300-307.
[11] L. Chen, Discrete Surfaces and Manifolds, Scientific & Practical
Computing, Rockville, MD, 2004.
[12] L. Chen and Y. Rong, Linear time recognition algorithms for
topological invariants in 3D, Proceedings of International Conference
on Pattern Recognition, 2008.
[13] S. E. Han, On the classification of the digital images up to
digital homotopy equivalence, Journal of Computer and Communications
Research 10 (2000), 207-216.
[14] S. E. Han, Non-product property of the digital fundamental group,
Information Sciences 171 (2005), 73-91.
[15] S. E. Han, Connected sum of digital closed surfaces, Information
Sciences 176 (2006), 332-348.
[16] S. E. Han, Digital fundamental group and Euler characteristic of
a connected sum of digital closed surfaces, Information Sciences
177(16) (2007), 3314-3326.
[17] G. T. Herman, Oriented surfaces in digital spaces, CVGIP:
Graphical Models and Image Processing 55 (1993), 381-396.
[18] T. Kacynski, K. Mischaikow and M. Mrozek, Computational Homology,
Springer-Verlag, New York, 2010.
[19] T. Y. Kong, A digital fundamental group, Computers and Graphics
13 (1989), 159-166.
[20] R. Malgouyres and G. Bertrand, A new local property of strong
n-surfaces, Pattern Recognition Letters 20 (1999), 417-428.
[21] A. Rosenfeld, Digital topology, American Mathematical Monthly 86
(1979), 76-87.
[22] A. Rosenfeld, Continuous functions on digital pictures, Pattern
Recognition Letters 4 (1986), 177-184.
[23] Joseph J. Rotman, An Introduction to Algebraic Topology,
Springer-Verlag, New York, 1998.
[24] Edwin H. Spanier, Algebraic Topology, Springer-Verlag, New York,
1966.