References

SOME WONDERFUL STATISTICAL PROPERTIES OF PI-NUMBER DECIMAL DIGITS


[1] V. Adamchik and S. Wagon, A simple formula for Amer. Math. Monthly 104 (1997), 852-855.

[2] D. Anderson, The Pi-Search Page.
http://www.angio.net/pi/piquery

[3] J. Arndt and C. Haenel, Pi-Unleashed, 2nd Edition, Springer-Verlag, Berlin, 2001.

[4] D. H. Bailey, The computation of decimal digit using Borwein’s quartically convergent algorithm, Math. Comput. 50 (1988), 283-296.

[5] D. H. Bailey, P. B. Borwein and S. Plouffe, On the rapid computation of various polylogarithmic constants, Math. Comput. 66 (1997), 903-913.

[6] D. H. Bailey and R. E. Crandall, On the random character of fundamental constant expansions, Exper. Math. 10 (2001), 175-190.
http://www.nersc.gov/ dhbailey/dhbpapers/baicran.pdf

[7] D. H. Bailey, J. M. Borwein, N. J. Calkin, R. Girgensohn, D. R. Luke and V. H. Moll, Experimental Mathematics in Action, Wellesley, MA: A K Peters, 2007.

[8] Petr Beckmann, A History of Pi, Barnes and Noble Publishing, ISBN 0880294183, 1989.

[9] Ari. Ben-Menahem, Historical Encyclopedia of Natural and Mathematical Sciences: Jones was first to use? for the ratio (perimeter/diameter) of a circle, in 1706, 2009.

[10] Lennart Berggren, Jonathan M. Borwein and Peter B. Borwein (eds.), Pi: A Source Book, Springer, 1999 (2nd Ed.), ISBN 978-0-387-98946-4.

[11] J. M. Borwein, P. B. Borwein and D. H. Bailey, Ramanujan, modular equations, and approximations to Pi, or how to compute one billion digits of Pi, Amer. Math. Monthly 96 (1989), 201-219.

[12] J. M. Borwein and D. H. Bailey, Mathematics by Experiment: Plausible Reasoning in the 21st Century, Wellesley, MA: A K Peters, 2003.

[13] J. M. Borwein, Talking About Pi.
http://www.cecm.sfu.ca/personal/jborwein/picover.ht ml

[14] C. K. Caldwell and H. Dubner, Primes in Pi, J. Recr. Math. 29 (1998), 282-289.

[15] G. W. Corder and D. I. Foreman, Nonparametric Statistics for Non-Statisticians: A Step-by-Step Approach, Wiley, New Jersey, 2009.

[16] T. Cover and J. A. Thomas, Elements of Information Theory, Wiley, New York, 2006.

[17] W. W. Gibbs, A digital slice of Pi, The new way to do pure math: Experimentally, Sci. Amer. 288 (2003), 23-24.
[18] X. Gourdon and P. Sebah, PiFast: The Fastest Program to Compute Pi.
http://numbers.computation.free.fr/Constants/PiProg ram/pifast.html

[19] K. Gouri, R. Bhattacharyya and A. Johnson, Statistical Concepts and Methods, John Wiley and Sons, 1977.

[20] http://www.pi314.net/eng/ramanujan.php

[21] http://numbers.computation.free.fr/Constants/Pi/pi. html

[22] Y. Kanada, New World Record of Pi: 51.5 Billion Decimal Digits
http://www.cecm.sfu.ca/personal/jborwein/Kanada50b. html

[23] Pi Calculated to Record Number of Digits, bbc.co.uk. 2010-01-06. [Retrieved 2010- 01-06].
http://news.bbc.co.uk/1/hi/technology/8442255.stm

[24] Alfred S. Posamentier and Ingmar Lehmann, Pi: A Biography of the World’s Most Mysterious Number, Prometheus Books, 2004, ISBN 978-1-59102-200-8.

[25] C. E. Shannon, A mathematical theory of communication, Bell Syst. Tech. J. 27 (379-423) (1984), 623-656.

26] H. J. Smith, Computing Pi.
http://www.geocities.com/hjsmithh/Pi.html
[27] S. Wagon, Is normal? Math. Intel. 7 (1985), 65-67.