References

ON EXISTENCE OF SOLUTIONS FOR GENERALIZED VECTOR EQUILIBRIUM PROBLEM


[1] E. Blum and W. Oettli, From optimization and variational inequalities to equilibrium problems, Math. Student 63 (1994), 123-145.

[2] G. Y. Chen and G. M. Cheng, Vector variational inequality and vector optimization, Lecture Notes in Econ. and Math. Systems, Vol. 285, Springer-Verlag, Berlin, (1987), 408-416.

[3] G. Y. Chen and B. D. Craven, Approximate dual and approximate vector variational inequality for multiobjective optimization, J. Aust. Math. Soc. Series A 47 (1989), 418-423.

[4] K. Fan, A generalization of Tychonoff’s fixed point theorem, Math. Ann. 142 (1961), 305-310.

[5] F. Giannessi, Theorem of alternative, quadratic programs, and complementarity problems, R. W. Cottle, F. Giannessi and J. L. Lions (Eds.), Variational Inequality and Complementarity Problems, John Wiley and Sons, Chichester, England, (1980), 151-186.

[6] F. Giannessi (Ed.), Vector Variational Inequalities and Vector Equilibrium, Kluwer Academic Publishers, Dordrecht, Boston, London, 2000.

[7] K. R. Kazmi and S. A. Khan, Existence of solutions to a generalized system, J. Optim. Theory Appl. 142 (2009), 355-361.

[8] I. V. Konnov and J. C. Yao, On the generalized variational inequality problem, J. Math. Anal. Appl. 206 (1997), 42-58.

[9] J. Li, N. J. Huang and J. K. Kim, On implicit vector equilibrium problems, J. Math. Anal. Appl. 283 (2003), 501-512.

[10] J. Li and Z. Q. He, Gap functions and existence of solutions to generalized vector variational inequalities, Applied Mathematics Letters 18 (2005), 989-1000.

[11] K. L. Lin, D. P. Yang and J. C. Yao, Generalized vector variational inequalities, J. Optim. Theory Appl. 92 (1997), 117-125.

[12] X. J. Long, N. J. Huang and K. L. Teo, Existence and stability of solutions for generalized strong vector quasi-equilibrium problem, Mathematical and Computer Modelling 47 (2008), 445-451.

[13] X. Q. Yang, Vector variational inequality and vector pseudo-linear optimization, J. Optim. Theory Appl. 95 (1997), 729-734.

[14] X. Q. Yang and C. J. Goh, On vector variational inequality: Its application in traffic equilibria, J. Optim. Theory Appl. 95(2) (1997), 431-443.

[15] G. X. Z. Yuan, The study of minimax inequalities and applications of economics and variational inequalities, Memoirs 132(625) (1998).

[16] L. C. Zeng and J. C. Yao, Generalized Minty’s lemma for generalized vector equilibrium problems, Applied Mathematics Letters 20 (2007), 32-37.