[1] E. Blum and W. Oettli, From optimization and variational
inequalities to equilibrium problems, Math. Student 63 (1994),
123-145.
[2] G. Y. Chen and G. M. Cheng, Vector variational inequality and
vector optimization, Lecture Notes in Econ. and Math. Systems, Vol.
285, Springer-Verlag, Berlin, (1987), 408-416.
[3] G. Y. Chen and B. D. Craven, Approximate dual and approximate
vector variational inequality for multiobjective optimization, J.
Aust. Math. Soc. Series A 47 (1989), 418-423.
[4] K. Fan, A generalization of Tychonoff’s fixed point
theorem, Math. Ann. 142 (1961), 305-310.
[5] F. Giannessi, Theorem of alternative, quadratic programs, and
complementarity problems, R. W. Cottle, F. Giannessi and J. L. Lions
(Eds.), Variational Inequality and Complementarity Problems, John
Wiley and Sons, Chichester, England, (1980), 151-186.
[6] F. Giannessi (Ed.), Vector Variational Inequalities and Vector
Equilibrium, Kluwer Academic Publishers, Dordrecht, Boston, London,
2000.
[7] K. R. Kazmi and S. A. Khan, Existence of solutions to a
generalized system, J. Optim. Theory Appl. 142 (2009), 355-361.
[8] I. V. Konnov and J. C. Yao, On the generalized variational
inequality problem, J. Math. Anal. Appl. 206 (1997), 42-58.
[9] J. Li, N. J. Huang and J. K. Kim, On implicit vector equilibrium
problems, J. Math. Anal. Appl. 283 (2003), 501-512.
[10] J. Li and Z. Q. He, Gap functions and existence of solutions to
generalized vector variational inequalities, Applied Mathematics
Letters 18 (2005), 989-1000.
[11] K. L. Lin, D. P. Yang and J. C. Yao, Generalized vector
variational inequalities, J. Optim. Theory Appl. 92 (1997),
117-125.
[12] X. J. Long, N. J. Huang and K. L. Teo, Existence and stability of
solutions for generalized strong vector quasi-equilibrium problem,
Mathematical and Computer Modelling 47 (2008), 445-451.
[13] X. Q. Yang, Vector variational inequality and vector
pseudo-linear optimization, J. Optim. Theory Appl. 95 (1997),
729-734.
[14] X. Q. Yang and C. J. Goh, On vector variational inequality: Its
application in traffic equilibria, J. Optim. Theory Appl. 95(2)
(1997), 431-443.
[15] G. X. Z. Yuan, The study of minimax inequalities and applications
of economics and variational inequalities, Memoirs 132(625) (1998).
[16] L. C. Zeng and J. C. Yao, Generalized Minty’s lemma for
generalized vector equilibrium problems, Applied Mathematics Letters
20 (2007), 32-37.