[1] G. E. Andrews, On the foundations of combinatorial theory V,
Eulerian Differential Operators, Studies in Appl. Math. 50 (1971),
345-375.
[2] N. P. Cakić, The complete bell polynomials and numbers of
mitrinović, Univ. Beograd. Publ. Elektrothen. Fak. 6 (1995),
75-79.
[3] L. Carlitz, q-Bernoulli numbers and polynomials, Duke Math.
J. 15 (1948), 987-1000.
[4] Ch. A. Charalambides, On the q-differences of the
generalized q-factorials, J. Statist. Plann. Inference 54
(1996), 31-43.
[5] Ch. A. Charalambides, Non-central generalized q-factorial
coefficients and q-Stirling numbers, Discrete Math. 275 (2004),
67-85.
[6] L. Comtet, Nombres de Stirling generaux et functions symetriques,
C. R. Acad. SC. Pais 257 (1972), 747-750.
[7] L. Comtet, Advanced Combinatorics, Reidel, Dordrecht, 1974.
[8] K. Dilcher, Determinant expressions for q-harmonic
congruence and degenerate Bernoulli numbers, Electronic Journal of
Combinatorics 15 (2008).
[9] T. Ernst, A method for q-calculus, Nonlinear Math. Phys. 4
(2003), 487-525.
[10] H. W. Gould, The q-Stirling number of first and second
kinds, Duke Math. J. 28 (1961), 281-289.
[11] V. J. W. Guo and C. Zhang, Some further q-series
identities related to divisor functions, (2011).
http:// arxiv.org/abs/1104.0823
[12] F. H. Jackson, On q-functions and a certain difference
operator, Trans. Roy. Soc. Edinburgh 46 (1908), 253-281.
[13] C. Wei and Q. Gu, q-Generalizations of a family of
harmonic number identities, Adv. Appl. Math. 45 (2010), 24-27.