References

Q-COMTET AND GENERALIZED Q-HARMONIC NUMBERS


[1] G. E. Andrews, On the foundations of combinatorial theory V, Eulerian Differential Operators, Studies in Appl. Math. 50 (1971), 345-375.

[2] N. P. Cakić, The complete bell polynomials and numbers of mitrinović, Univ. Beograd. Publ. Elektrothen. Fak. 6 (1995), 75-79.

[3] L. Carlitz, q-Bernoulli numbers and polynomials, Duke Math. J. 15 (1948), 987-1000.

[4] Ch. A. Charalambides, On the q-differences of the generalized q-factorials, J. Statist. Plann. Inference 54 (1996), 31-43.

[5] Ch. A. Charalambides, Non-central generalized q-factorial coefficients and q-Stirling numbers, Discrete Math. 275 (2004), 67-85.

[6] L. Comtet, Nombres de Stirling generaux et functions symetriques, C. R. Acad. SC. Pais 257 (1972), 747-750.

[7] L. Comtet, Advanced Combinatorics, Reidel, Dordrecht, 1974.

[8] K. Dilcher, Determinant expressions for q-harmonic congruence and degenerate Bernoulli numbers, Electronic Journal of Combinatorics 15 (2008).

[9] T. Ernst, A method for q-calculus, Nonlinear Math. Phys. 4 (2003), 487-525.

[10] H. W. Gould, The q-Stirling number of first and second kinds, Duke Math. J. 28 (1961), 281-289.

[11] V. J. W. Guo and C. Zhang, Some further q-series identities related to divisor functions, (2011).
http:// arxiv.org/abs/1104.0823

[12] F. H. Jackson, On q-functions and a certain difference operator, Trans. Roy. Soc. Edinburgh 46 (1908), 253-281.

[13] C. Wei and Q. Gu, q-Generalizations of a family of harmonic number identities, Adv. Appl. Math. 45 (2010), 24-27.