References

INEQUALITIES FOR THE SEIFFERT'S MEANS IN TERMS OF THE IDENTRIC MEAN


[1] Y. M. Chu and W. F. Xia, Two sharp inequalities for power mean, geometric mean and harmonic mean, Journal of Inequalities and Applications, Vol. 2009, Article ID 741923, 6 pages, (2009).

[2] Y. M. Chu and W. F. Xia, Inequalities for generalized logarithmic means, Journal of Inequalities and Applications, Vol. 2009, Article ID 763252, 7 pages, (2009).

[3] Y. M. Chu and B. Y. Long, Best possible inequalities between generalized logarithmic mean and classical means, Abstract and Applied Analysis, Vol. 2010, Article ID 303286, 13 pages, (2010).

[4] Y. M. Chu, Y. F. Qiu, M. K. Wang and G. D. Wang, The optimal convex combination bounds of arithmetic and harmonic means for the Seiffert’s mean, Journal of Inequalities and Applications, Article ID 436457, dio: 10.1155/436457, 7 pages, (2010).

[5] T. Hara, M. Uchiyama and S. E. Takahasi, A refinement of various mean inequalities, Journal of Inequalities and Applications 2(4) (1998), 387-395.

[6] P. A. Hästö, A monotonicity property of ratios of symmetric homogeneous means, Journal of Inequalities in Pure and Applied Mathematics 3(5) (2002), 1-54 (Article 71).

[7] P. A. Hästö, Optimal inequalities between Seiffert’s mean and power mean, Mathematical Inequalities and Applications 7(1) (2004), 47-53.

[8] A. A. Jagers, Solution of problem 887, Nieuw Archief voor Wiskunde 12 (1994), 230-231.

[9] B. Y. Long and Y. M. Chu, Optimal inequalities for generalized logarithmic, arithmetic and geometric means, Journal of Inequalities and Applications, Vol. 2010, Article ID 806825, 10 pages, (2010).

[10] B. Y. Long and Y. M. Chu, Optimal power mean bounds for the weighted geometric mean of classical means, Journal of Inequalities and Applications, Vol. 2010, Article ID 905679, 6 pages, (2010).

[11] E. Neuman and J. Sändor, On the Schwab-Borchardt mean, Mathematica Pannonica 14(2) (2003), 253-266.

[12] E. Neuman and J. Sändor, On certain means of two arguments and their extensions, Int. J. Math. Math. Sci. 2003(16) (2003), 981-993.

[13] E. Neuman and J. Sändor, On the Schwab-Borchardt mean, Mathematica Pannonica 17(1) (2006), 49-59.

[14] E. Neuman and J. Sändor, Copanion inequalities for certain bivariate means, Applicable Analysis and Discrete Mathematics 3 (2009), 46-51.

[15] H. J. Seiffert, Problem 887, Nieuw Archief voor Wiskunde 11(2) (1993), 176.

[16] H. J. Seiffert, Ungleichungen für einen bestimmten mittelwert, Nieuw Archief voor Wiskunde 13(2) (1995), 195-198.

[17] H. J. Seiffert, Aufgabe Die Wurzel 29 (1995), 221-222.

[18] M. Y. Shi, Y. M. Chu and Y. P. Jiang, Optimal inequalities among various means of two arguments, Abstract and Applied Analysis, Vol. 2009, Article ID 694394, 10 pages, (2009).

[19] M. K. Wang, Y. M. Chu and Y. F. Qiu, Some comparison inequalities for generalized Muirhead and identric means, Journal of Inequalities and Applications, Vol. 2010, Article ID 295620, 10 pages, (2010).

[20] J. J. Wen and W. L. Wang, The optimization for the inequalities of power means, Journal of Inequalities and Applications, Vol. 2006, Article ID 46782, 25 pages, (2006).

[21] W. F. Xia, Y. M. Chu and G. D. Wang, The optimal upper and lower power mean bounds for a convex combination of the arithmetic and logarithmic means, Abstract and Applied Analysis, Vol. 2010, Article ID 604804, 9 pages, (2010).