[1] M. Ainsworth and J. T. Oden, A posteriori error estimators for the
Stokes and Oseen equations, SIAM J. Numer. Anal. 34 (1997),
228-245.
[2] M. Bahaj and A. Rachid, A posteriori error analysis of
nonconforming finite elements discretization for the Stokes
equations, Int. J. Comp. Math., to appear.
[3] R. E. Bank and D. J. Rose, Some error estimates for the box
method, SIAM J. Numer. Anal. 24 (1987), 777-787.
[4] R. E. Bank and B. D. Welfert, A posteriori error estimates for the
Stokes equations: A comparison, Comput. Methods Appl. Mech. Engrg. 82
(1990), 323-340.
[5] R. E. Bank and B. D. Welfert, A posteriori error estimates for the
Stokes problem, SIAM J. Numer. Anal. 28 (1991), 591-623.
[6] M. Berggren, A vertex-centered, dual discontinuous Galerkin
method, J. Comput. Appl. Math. 192 (2006), 175-181.
[7] S. C. Brenner and L. R. Scott, The Mathematical Theory of Finite
Element Methods, Springer, 2008.
[8] Z. Cai, On the finite volume method, Numer. Math. 58 (1991),
713-735.
[9] P. Chatzipantelidis, Finite volume methods for elliptic PDEs: A
new approach, Math. Model. Numer. Anal. 36 (2002), 307-324.
[10] S. H. Chou and D. Y. Kwak, Analysis and convergence of the MAC
scheme for the generalized Stokes problem, Numer, Meth. PDEs 13
(1997), 147-162.
[11] S. H. Chou, Analysis and convergence of a covolume method for the
generalized Stokes problem, Math. Comp. 66 (1997), 85-104.
[12] S. H. Chou and D. Y. Kwak, Multigrid algorithms for a
vertex-centered covolume method for elliptic problems, Numer. Math. 90
(2002), 441-458.
[13] M. Crouzeix and P. A. Raviart, Conforming and non-conforming
finite elements for solving the stationary Stokes equations,
R.A.I.R.O. Anal. Numer. 7 (1973), 33-76.
[14] E. Dari, R. Duran and C. Padra, Error estimators for
nonconforming finite element approximations of the Stokes problem,
Math. Comp. 64 (1995), 1017-1033.
[15] K. Djadal and S. Nicaise, Some refined finite volume element
methods for Stokes and Navier-Stokes systems with corner
singularities, J. Numer. Math. 12(4) (2004), 255-284.
[16] R. D. Ewing, R. Lazarov and Y. Lin, Finite volume element
approximations of nonlocal reactive flows in porous media, Numer.
Meth. PDEs 16 (2000), 285-311.
[17] R. E. Ewing, T. Lin and Y. Lin, On the accuracy of the finite
volume element method based on piecewise linear polynomials, SIAM J.
Numer. Anal. 39 (2002), 1865-1888.
[18] R. Eymard, T. Gallout and R. Herbin, Finite Volume Methods:
Handbook of Numerical Analysis, Amsterdam, North-Holland, 2000.
[19] V. Girault and P. A. Raviart, Finite Element Methods for
Navier-Stokes Equations, Theory and Algorithms, Springer Series in
Comp. Math., Vol. 5, Springer, Berlin, 1986.
[20] H. Guoliang and H. Yinnian, The finite volume method based on
stabilized finite element for the stationary Navier-Stokes problem, J.
Comp. Appl. Math. 205 (2007), 651-665.
[21] D. Kay and D. Silvester, A-posteriori error estimation for
stabilized mixed approximations of the Stokes equations, SIAM J. Sci.
Comput. 21 (2000), 1321-1336.
[22] R. H. Li, Z. Y. Chen and W. Wei, Generalized Difference Methods
for Differential Equations: Numerical Analysis of Finite Volume
Methods, Marcel Dekker, New York, 2000.
[23] L. R. Scott and S. Zhang, Finite element interpolation of
nonsmooth functions satisfying boundary conditions, Math. Comp. 54
(1990), 483-493.
[24] R. Temam, Navier-Stokes Equations, Theory and Numerical Analysis,
Amsterdam, North-Holland, 1979.
[25] R. Verfrth, A posteriori error estimators for the Stokes
equations, Numer. Math. 55 (1989), 309-325.
[26] R. Verfrth, A Review of a Posteriori Error Estimation and
Adaptive Mesh-Refinement Techniques, Wiley and Teubner, New York and
Stuttgart, 1996.
[27] J. E. Vincent and N. P. Timothy, Residual a posteriori error
estimator for a three-field model of a non-linear generalized Stokes
problem, 195 (2006), 2599-2610.
[28] V. R. Voller, Basic Control Volume Finite Element Methods for
Fluids and Solids, World Scientific, 2009.
[29] H. J. Wu and R. H. Li, Error estimates for finite volume element
methods for general second order elliptic problem, Numer. Methods
PDEs 19 (2003), 693-708.
[30] X. Ye, A discontinuous finite volume method for the Stokes
problems, SIAM J. Numer. Anal. 44 (2006), 183-198.