References

A POSTERIORI ERROR ESTIMATOR FOR NONCONFORMING FINITE VOLUME ELEMENT APPROXIMATIONS OF THE STOKES PROBLEM


[1] M. Ainsworth and J. T. Oden, A posteriori error estimators for the Stokes and Oseen equations, SIAM J. Numer. Anal. 34 (1997), 228-245.

[2] M. Bahaj and A. Rachid, A posteriori error analysis of nonconforming finite elements discretization for the Stokes equations, Int. J. Comp. Math., to appear.

[3] R. E. Bank and D. J. Rose, Some error estimates for the box method, SIAM J. Numer. Anal. 24 (1987), 777-787.

[4] R. E. Bank and B. D. Welfert, A posteriori error estimates for the Stokes equations: A comparison, Comput. Methods Appl. Mech. Engrg. 82 (1990), 323-340.

[5] R. E. Bank and B. D. Welfert, A posteriori error estimates for the Stokes problem, SIAM J. Numer. Anal. 28 (1991), 591-623.

[6] M. Berggren, A vertex-centered, dual discontinuous Galerkin method, J. Comput. Appl. Math. 192 (2006), 175-181.

[7] S. C. Brenner and L. R. Scott, The Mathematical Theory of Finite Element Methods, Springer, 2008.

[8] Z. Cai, On the finite volume method, Numer. Math. 58 (1991), 713-735.

[9] P. Chatzipantelidis, Finite volume methods for elliptic PDEs: A new approach, Math. Model. Numer. Anal. 36 (2002), 307-324.

[10] S. H. Chou and D. Y. Kwak, Analysis and convergence of the MAC scheme for the generalized Stokes problem, Numer, Meth. PDEs 13 (1997), 147-162.

[11] S. H. Chou, Analysis and convergence of a covolume method for the generalized Stokes problem, Math. Comp. 66 (1997), 85-104.

[12] S. H. Chou and D. Y. Kwak, Multigrid algorithms for a vertex-centered covolume method for elliptic problems, Numer. Math. 90 (2002), 441-458.

[13] M. Crouzeix and P. A. Raviart, Conforming and non-conforming finite elements for solving the stationary Stokes equations, R.A.I.R.O. Anal. Numer. 7 (1973), 33-76.

[14] E. Dari, R. Duran and C. Padra, Error estimators for nonconforming finite element approximations of the Stokes problem, Math. Comp. 64 (1995), 1017-1033.

[15] K. Djadal and S. Nicaise, Some refined finite volume element methods for Stokes and Navier-Stokes systems with corner singularities, J. Numer. Math. 12(4) (2004), 255-284.

[16] R. D. Ewing, R. Lazarov and Y. Lin, Finite volume element approximations of nonlocal reactive flows in porous media, Numer. Meth. PDEs 16 (2000), 285-311.

[17] R. E. Ewing, T. Lin and Y. Lin, On the accuracy of the finite volume element method based on piecewise linear polynomials, SIAM J. Numer. Anal. 39 (2002), 1865-1888.

[18] R. Eymard, T. Gallout and R. Herbin, Finite Volume Methods: Handbook of Numerical Analysis, Amsterdam, North-Holland, 2000.

[19] V. Girault and P. A. Raviart, Finite Element Methods for Navier-Stokes Equations, Theory and Algorithms, Springer Series in Comp. Math., Vol. 5, Springer, Berlin, 1986.

[20] H. Guoliang and H. Yinnian, The finite volume method based on stabilized finite element for the stationary Navier-Stokes problem, J. Comp. Appl. Math. 205 (2007), 651-665.

[21] D. Kay and D. Silvester, A-posteriori error estimation for stabilized mixed approximations of the Stokes equations, SIAM J. Sci. Comput. 21 (2000), 1321-1336.

[22] R. H. Li, Z. Y. Chen and W. Wei, Generalized Difference Methods for Differential Equations: Numerical Analysis of Finite Volume Methods, Marcel Dekker, New York, 2000.

[23] L. R. Scott and S. Zhang, Finite element interpolation of nonsmooth functions satisfying boundary conditions, Math. Comp. 54 (1990), 483-493.

[24] R. Temam, Navier-Stokes Equations, Theory and Numerical Analysis, Amsterdam, North-Holland, 1979.

[25] R. Verfrth, A posteriori error estimators for the Stokes equations, Numer. Math. 55 (1989), 309-325.

[26] R. Verfrth, A Review of a Posteriori Error Estimation and Adaptive Mesh-Refinement Techniques, Wiley and Teubner, New York and Stuttgart, 1996.

[27] J. E. Vincent and N. P. Timothy, Residual a posteriori error estimator for a three-field model of a non-linear generalized Stokes problem, 195 (2006), 2599-2610.

[28] V. R. Voller, Basic Control Volume Finite Element Methods for Fluids and Solids, World Scientific, 2009.

[29] H. J. Wu and R. H. Li, Error estimates for finite volume element methods for general second order elliptic problem, Numer. Methods PDEs 19 (2003), 693-708.

[30] X. Ye, A discontinuous finite volume method for the Stokes problems, SIAM J. Numer. Anal. 44 (2006), 183-198.