References

ON THE RECURSIONS OF TWO-DIMENSIONAL SUBSET AUTOREGRESSIONS


[1] S. Balcisoy, R. Torre, M. Ponedr, P. Fua and D. Thalmann, Augmented Reality for Real and Virtual Humans, Symposium on Virtual Reality Software Technology, Geneva, Switzerland, 2000.

[2] N. K. Bose, Neural Network Fundamentals with Graphs, Algorithms and Applications, McGraw-Hill, 1996.

[3] N. K. Bose, Multidimensional Systems Theory and Applications, Springer, Netherlands, 2009.

[4] E. J. Hannan and M. Deistler, The Statistical Theory of Linear Systems, John Wiley and Sons, New York, 1988.

[5] X. Liu and M. Najim, A two-dimensional fast lattice recursive least squares algorithm, IEEE Transactions on Signal Processing 44(10) (1996), 2557-2567.

[6] A. Ludovic, V. Andrew and A. Tangborn, Wavelet-based reduced rank Kalman filter for assimilation of stratospheric chemical tracer observations, Monthly Weather Review 132 (2004), 1220-1237.

[7] T. Nakachi, K. Yamashita and N. Hamada, Asymmetric half-plane lattice modelling based on 2-D Levinson algorithm, IEEE Transactions on Circuits and Systems-II: Analogue and Digital Signal Processing 44(10) (1997), 865-868.

[8] J. Penm and R. D. Terrell, On the recursive fitting of subset autoregressions, Journal of Time Series Analysis 3 (1982), 43-59.

[9] J. Penm and R. D. Terrell, A note on the recursions of multichannel complex subset autoregressions, IEEE Transactions on Automatic Control AC-28(4) (1983).

[10] J. Penm, H. C. Penm and R. D. Terrell, A note on the sequential fitting of subset autoregressions using the prewindowed case, IEEE Transactions on Signal Processing 43(1) (1995), 322-327.

[11] N. Sarris and M. G. Strintzis, 3D Modelling and Animation: Synthesis and Analysis Techniques for the Human Body, IRM Press, PA, USA, 2004.