References

THE STOCHASTIC INTEGRAL WITH RESPECT TO THE SUB-FRACTIONAL BROWNIAN MOTION WITH


[1] E. Alòs, O. Mazet and D. Nualart, Stochastic calculus with respect to Gaussian processes, Ann. Probab. 29 (2001), 766-801.

[2] E. Alòs and D. Nualart, Stochastic integration with respect to the fractional Brownian motion, Stochastics and Stochastics Reports 75 (2003), 129-152.

[3] F. Biagini, Y. Hu, B. Øksendal and T. Zhang, Stochastic Calculus for Fractional Brownian Motions and Applications, Springer-Verlag, 2008.

[4] T. Bojdecki, L. G. Gorostiza and A. Talarczyk, Sub-fractional Brownian motion and its relation to occupation times, Statist. Probab. Lett. 69 (2004), 405-419.

[5] T. Bojdecki, L. G. Gorostiza and A. Talarczyk, Fractional Brownian density process and its self-intersection local time of order k, J. Theoret. Probab. 69 (2004), 717-739.

[6] T. Bojdecki, L. G. Gorostiza and A. Talarczyk, Limit theorems for occupation time fluctuations of branching systems 1: Long-range dependence, Stochastic Process. Appl. 116 (2006), 1-18.

[7] T. Bojdecki, L. G. Gorostiza and A. Talarczyk, Some extensions of fractional Brownian motion and sub-fractional Brownian motion related to particle systems, Elect. Comm. Probab. 12 (2007), 161-172.

[8] J. M. E. Guerra and D. Nualart, The variation of the divergence integral with respect to the fractional Brownian motion for and fractional Bessel processes, Stochastic Process. Appl. 115 (2005), 91-115.

[9] Y. Hu, Integral transformations and anticipative calculus for fractional Brownian motions, Memoirs Amer. Math. Soc. 175(825) (2005).

[10] Y. Mishura, Stochastic calculus for fractional Brownian motions and related processes, Lect. Notes in Math. 1929 (2008).

[11] D. Nualart, Malliavin Calculus and Related Topics, 2nd edition Springer, New York, 2006.

[12] G. Shen and L. Yan, Remarks on sub-fractional Bessel processes, to appear in Acta Mathematica Scientia (2010).

[13] A. V. Skorohod, On a generalization of a stochastic integral, Theory Probab. Appl. 20 (1975), 219-233.

[14] C. Tudor, Some properties of the sub-fractional Brownian motion, Stochastics 79 (2007), 431-448.

[15] C. Tudor, Some aspects of stochastic calculus for the sub-fractional Brownian motion, Ann. Univ. Bucuresti, Mathematica (2008), 199-230.

[16] C. Tudor, Inner product spaces of integrands associated to sub-fractional Brownian motion, Statist. Probab. Lett. 78 (2008), 2201-2209.

[17] C. Tudor, On the Wiener integral with respect to a sub-fractional Brownian motion on an interval, J. Math. Anal. Appl. 351 (2009), 456-468.

[18] L. Yan and G. Shen, On the collision local time of sub-fractional Brownian motions, Statist. Probab. Lett. 80 (2010), 296-308.

[19] L. Yan and G. Shen, Itô formulas for the sub-fractional Brownian motion, to appear in Commun. Stoch. Anal. (2010).