References

NOETHERIAN THEORY FOR A SINGULAR LINEAR DIFFERENTIAL OPERATOR OF HIGHER ORDER L IN THE SPACE OF DISTRIBUTIONS


[1] J. H. Ferziger and H. G. Kaper, Mathematical theory of Transport Processes in Gases, North-Holland Publ. Company, Amsterdam–London, 1972.

[2] D. Hilbert, Grundzüge einer allgemeinen Theorie der linear Integralgleichungen, Chelsea Publication Company, New York, 1953.

[3] E. Picard, Un théorème général sur certaines équations intégrales de troisième espèce, Comptes Rendus 150 (1910), 489-491.

[4] G. R. Bart, Three theorems on third-kind linear integral equations, Journal of Mathematical Analysis and Applications 79(1) (1981), 48-57.

[5] G. R. Bart and R. L. Warnock, Linear integral equations of the third kind, SIAM Journal on Mathematical Analysis 4(4) (1973), 609-622.
DOI: https://doi.org/10.1137/0504053

[6] N. Sukavanam, A Fredholm-Type theory for third-kind linear integral equations, Journal of Mathematical Analysis and Applications 100(2) (1984), 478-484.
DOI: https://doi.org/10.1016/0022-247X(84)90096-9

[7] D. Shulaia, On one Fredholm integral equation of third kind, Georgian Mathematical Journal 4(5) (1997), 461-476.
DOI: https://doi.org/10.1023/A:1022928500444

[8] D. Shulaia, Solution of a linear integral equation of third kind, Georgian Mathematical Journal 9(1) (2002), 179-196.
DOI: https://doi.org/10.1515/GMJ.2002.179

[9] D. Shulaia, Integral equations of the third kind for the case of piecewise monotone coefficients, Transactions of A. Razmadze Mathematical Institute 171(3) (2017), 396-410.
DOI: https://doi.org/10.1016/j.trmi.2017.05.002

[10] V. S. Rogozhin and S. N. Raslambekov, Noether theory of integral equations of the third kind in the space of continuous and generalized functions, Soviet Mathematics (Iz. VUZ) 23(1) (1979), 48-53.

[11] A. Abdourahman, On a linear integral equation of the third kind with a singular differential operator in the main part, Rostov-na-Donu, deposited in VINITI, Moscow, 28.03.2002, No.560-B2002.

[12] A. Abdourahman and N. Karapetiants, Noether theory for a third kind linear integral equation with singular linear differential operator in the main part, Proceedings of A. Razmadze Mathematical Institute 135 (2004), 1-26.

[13] N. S. Gabbassov, On direct methods of the solutions of Fredholm’s integral equations in the space of generalized functions, PhD Thesis, Kazan, 1987.

[14] N. S. Gabbassov, Methods for solving an integral equation of the third kind with fixed singularities in the kernel, Differential Equations 45(9) (2009), 1341-1348.
DOI: https://doi.org/10.1134/S0012266109090122

[15] N. S. Gabbassov, A special version of the collocation method for integral equations of the third kind, Differential Equations 41(12) (2005), 1768-1774.
DOI: https://doi.org/10.1007/s10625-006-0013-4

[16] N. S. Gabbassov, Metody Resheniya integral’nykh uravnenii Fredgol’ma v prostranstvakh obobshchennykh funktsii (Methods for Solving Fredholm Integral Equations in Spaces of Distributions), Izd-vo Kazan. Un-ta, Kazan, 2006 (in Russian).

[17] N. S. Karapetiants and S. G. Samko, Equations with Involutive Operators, Birkhauser, Boston–Basel–Berlin, 2001.
DOI: https://doi.org/10.1007/978-1-4612-0183-0

[18] S. Prossdorf, Some Classes of Singular Equations, Mir, Moscow, 1979 (in Russian).

[19] G. R. Bart and R. L. Warnock, Solutions of a nonlinear integral equation for high-energy scattering, III. Analyticity of solutions in a parameter, explored numerically, Journal of Mathematical Physics 13(12) (1972), 1896-1902.
DOI: https://doi.org/10.1063/1.1665929

[20] G. R. Bart, P. W. Johnson and R. L. Warnock, Continuum ambiguity in the construction of unitary analytic amplitudes from fixed-energy-scattering data, Journal of Mathematical Physics 14(11) (1973), 1558-1565.
DOI: https://doi.org/10.1063/1.1666226

[21] E. Tompé Weimbapou, Abdourahman and E. Kengne, On Delta-Extension for a Noether Operator, ISSN 1066-369X, Russian Mathematics 65(11) (2021), 34-45. c Allerton Press, Inc., 2021. Russian Text c The Author(s), 2021, published in Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika, 2021, No. 11, pp. 40–53.
DOI: https://doi.org/10.3103/S1066369X21110050

[22] V. S. Rogozhin, Noether Theory of Operators, 2nd Edition, Rostov-na-Donu: Izdat. Rostov University, 1982, 99 pages.

[23] Abdourahman, Linear Integral Equation of the Third Kind with a Singular Differential Operator in the Main Part, Ph.D Thesis, Rostov State University, 142 Pages, 2003 (in Russian).

[24] Abdourahman, Integral equation of the third kind with singularity in the main part, Abstracts of reports, International conference, Analytic Methods of Analysis and Differential Equations, AMADE.15-19th of February 2001, Minsk Belarus, Page 13.

[25] Abdourahman, On a linear integral equation of the third kind with singularity in the main part, Abstract of reports, International School-seminar in Geometry and analysis dedicated to the 90th year N. V. Efimov, Abrao-Diurso, Rostov State University, 5-11th September 2000, 86-87.

[26] R. V. Duduchava, Singular integral equations in the Holder spaces with weight, I. Holder coefficients, Mathematics Researches, T. V, 2nd Edition (1970), 104-124.

[27] Z. B. Tsalyuk, Volterra Integral Equations//Itogi Nauki i Techniki, Mathematical Analysis, V. 15. Moscow: VINITI AN SSSR. P. 131-199.

[28] Abdourahman, Ecclésiaste Tompé Weimbapou and Emmanuel Kengne, Noetherity of a Dirac Delta-Extension for a Noether Operator, International Journal of Theoretical and Applied Mathematics 8(3) (2022), 51-57.
DOI: https://doi.org/10.11648/j.ijtam.20220803.11

[29] D. Shulaia, Solution of a linear integral equation of third kind, Georgian Mathematical Journal 9(1) (2002), 179-196.
DOI: https://doi.org/10.1515/GMJ.2002.179

[30] V. Yurko, Integral transforms connected with differential operators having singularities inside the interval, Integral Transforms and Special Functions 5(3-4) (1997), 309-322.
DOI: https://doi.org/10.1080/10652469708819143

[31] V. Yurko, On higher-order differential operators with singularity inside the interval, Mathematicheskie Zamietkie 71(1) (2002), 152-156.

[32] Abdourahman, Construction of noether theory for a singular linear differential operator, International Journal of Innovative Research in Sciences and Engineering Studies 2(7) (2022), 6-14.

[33] Abdourahman, Noetherization of a singular linear differential operator, International Journal of Innovative Research in Sciences and Engineering Studies 2(12) (2022), 9-17.