References

SPECIAL NOETHERIZATION APPROACH FOR AN INTEGRO-DIFFERENTIAL OPERATOR A


[1] J. H. Ferziger and H. G. Kaper, Mathematical Theory of Transport Processes in Gases, North-Holland Publication Company, Amsterdam-London, 1972.

[2] D. Hilbert, Grundzüge einer allgemeinen Theorie der linear Integralgleichungen, Chelsea Publication Company, New York, 1953.

[3] E. Picard, Un théorème général sur certaines équations intégrales de troisième espèce, Comptes Rendus 150 (1910), 489-491.

[4] G. R. Bart, Three theorems on third kind linear integral equations, J. Math. Anal. Appl. 79(1) (1981), 48-57.
DOI: https://doi.org/10.1016/0022-247X(81)90007-X

[5] G. R. Bart and R. L. Warnock, Linear integral equations of the third kind, SIAM J. Math. Anal. 4(4) (1973), 609-622.
DOI: https://doi.org/10.1137/0504053

[6] N. Sukavanam, A Fredholm-type theory for third kind linear integral equations, J. Math. Analysis Appl. 100(2) (1984), 478-485.
DOI: https://doi.org/10.1016/0022-247X(84)90096-9

[7] D. Shulaia, On one Fredholm integral equation of third kind, Georgian Math. J. 4 (1997), 464-476.
DOI: https://doi.org/10.1023/A:1022928500444

[8] D. Shulaia, Solution of a linear integral equation of third kind, Georgian Math. J. 9 (2002), 179-196.
DOI: https://doi.org/10.1515/GMJ.2002.179

[9] D. Shulaia, Integral equations of third kind for the case of piecewise monotone coefficients, Transactions of A. Razmadze Math. Institute 171(3) (2017), 396-410.
DOI: https://doi.org/10.1016/j.trmi.2017.05.002

[10] V. S. Rogozhin and S. N. Raslambekov, Noether theory of integral equations of the third kind in the space of continuous and generalized functions, Soviet Math. (Iz. VUZ) 23(1) (1979), 48-53.

[11] A. Abdourahman, On a linear integral equation of the third kind with a singular differential operator in the main part (Rostov-na-Donu, deposited in VINITI, Moscow, 28.03.2002, No.560-B (2002).

[12] A. Abdourahman and N. Karapetiants, Noether theory for third kind linear integral equation with a singular linear differential operator in the main part, Proceedings of A. Razmadze Math. Institute 135 (2004), 1-26.

[13] N. S. Gabbassov, On Direct Methods of the Solutions of Fredholm’s Integral Equations in the Space of Generalized Functions, PhD Thesis, Kazan, 1987.

[14] N. S. Gabbasov, Methods for solving an integral equation of the third kind with fixed singularities in the kernel, Diff. Equ. 45 (2009), 1370-1378.
DOI: https://doi.org/10.1134/S0012266109090122

[15] N. S. Gabbasov, A special version of the collocation method for integral equations of the third kind, Diff. Equ. 41 (2005), 1768-1774.
DOI: https://doi.org/10.1007/s10625-006-0013-4

[16] N. S. Gabbassov, Metody resheniya integral’nykh uravnenii Fredgol’ma v prostranstvakh obobshchennykh funktsii (Methods for Solving Fredholm Integral Equations in Spaces of Distributions) (Izd-vo Kazan. Un-ta, Kazan, 2006) [in Russian].

[17] N. Karapetiants and S. Samko, Equations with Involutive Operators, Birkhauser, Boston-Basel-Berlin, 2001.
DOI: https://doi.org/10.1007/978-1-4612-0183-0

[18] S. Prossdorf, Some Classes of Singular Equations, Mir, Moscow, 1979 [in Russian].

[19] G. R. Bart and R. L. Warnock, Solutions of a nonlinear integral equation for high energy scattering, III. Analyticity of solutions in a parameter explored numerically, J. Math. Phys. 13 (1972), 1896-1902.

[20] G. R. Bart, P. W. Johnson and R. L. Warnock, Continuum ambiguity in the construction of unitary analytic amplitudes from fixed-energy scattering data, J. Math. Phys. 14 (1973), 1558-1565.
DOI: https://doi.org/10.1063/1.1666226

[21] E. Tompé Weimbapou, Abdourahman, and E. Kengne, On delta-extension for a noether operator. ISSN 1066-369X, Russian Mathematics, 2021, Vol. 65, No. 11, pp. 34-45. c Allerton Press, Inc., 2021. Russian Text c The Author(s), 2021, published in Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika, 2021, No. 11, pages 40-53.

[22] V. S. Rogozhin, Noether theory of operators, 2nd Edition, Rostov-na- Donu: Izdat. Rostov Univ. (1982), 99 p.

[23] Abdourahman, Linear integral equation of the third kind with a singular differential operator in the main part, Ph.D Thesis, Rostov State University, 142 Pages, (2003) [in Russian].

[24] Abdourahman, Integral equation of the third kind with singularity in the main part, Abstracts of reports, International conference, Analytic methods of analysis and differential equations, AMADE, 15-19th of February 2001, Minsk Belarus, Page 13.

[25] Abdourahman, On a linear integral equation of the third kind with singularity in the main part, Abstract of reports, International School-seminar in Geometry and analysis dedicated to the 90th year N. V Efimov. Abrao-Diurso, Rostov State University, 5-11th September 2000, pages 86-87.

[26] R. V. Duduchava, Singular integral equations in the Holder spaces with weight, I. Holder coefficients, Mathematics Researches, T. V, 2nd Edition, (1970), pages 104-124.

[27] Z. B. Tsalyuk, Volterra Integral Equations//Itogi Nauki i Techniki, Mathematical Analysis, V. 15. Moscow: VINITI AN SSSR. P. 131-199.

[28] D. Shulaia, A solution of a linear integral equation of third kind, Georgian Mathematical Journal 9(1) (2002), 179-196.
DOI: https://doi.org/10.1515/GMJ.2002.179

[29] V. Yurko, Integral transforms connected with differential operators having singularities inside the interval, Integral Transforms and Special Functions 5(3-4) (1997), 309-322.
DOI: https://doi.org/10.1080/10652469708819143

[30] V. A. Yurko, On a differential operators of higher order with singularities inside the interval, Kratkie sochenie, Mathematicheskie Zamietkie 71(1) (2002), 152-156.

[31] D. Shulaia, Integral equation of the third kind for the case of piecewise monotone coefficients, Transactions of A. Razmadze Mathematical Institute 171(3) (2017), 396-410.
DOI: https://doi.org/10.1016/j.trmi.2017.05.002