[1] J. H. Ferziger and H. G. Kaper, Mathematical Theory of Transport
Processes in Gases, North-Holland Publication Company,
Amsterdam-London, 1972.
[2] D. Hilbert, Grundzüge einer allgemeinen Theorie der linear
Integralgleichungen, Chelsea Publication Company, New York, 1953.
[3] E. Picard, Un théorème général sur certaines équations
intégrales de troisième espèce, Comptes Rendus 150 (1910), 489-491.
[4] G. R. Bart, Three theorems on third kind linear integral
equations, J. Math. Anal. Appl. 79(1) (1981), 48-57.
DOI: https://doi.org/10.1016/0022-247X(81)90007-X
[5] G. R. Bart and R. L. Warnock, Linear integral equations of the
third kind, SIAM J. Math. Anal. 4(4) (1973), 609-622.
DOI: https://doi.org/10.1137/0504053
[6] N. Sukavanam, A Fredholm-type theory for third kind linear
integral equations, J. Math. Analysis Appl. 100(2) (1984), 478-485.
DOI: https://doi.org/10.1016/0022-247X(84)90096-9
[7] D. Shulaia, On one Fredholm integral equation of third kind,
Georgian Math. J. 4 (1997), 464-476.
DOI: https://doi.org/10.1023/A:1022928500444
[8] D. Shulaia, Solution of a linear integral equation of third kind,
Georgian Math. J. 9 (2002), 179-196.
DOI: https://doi.org/10.1515/GMJ.2002.179
[9] D. Shulaia, Integral equations of third kind for the case of
piecewise monotone coefficients, Transactions of A. Razmadze Math.
Institute 171(3) (2017), 396-410.
DOI: https://doi.org/10.1016/j.trmi.2017.05.002
[10] V. S. Rogozhin and S. N. Raslambekov, Noether theory of integral
equations of the third kind in the space of continuous and generalized
functions, Soviet Math. (Iz. VUZ) 23(1) (1979), 48-53.
[11] A. Abdourahman, On a linear integral equation of the third kind
with a singular differential operator in the main part
(Rostov-na-Donu, deposited in VINITI, Moscow, 28.03.2002, No.560-B
(2002).
[12] A. Abdourahman and N. Karapetiants, Noether theory for third kind
linear integral equation with a singular linear differential operator
in the main part, Proceedings of A. Razmadze Math. Institute 135
(2004), 1-26.
[13] N. S. Gabbassov, On Direct Methods of the Solutions of
Fredholm’s Integral Equations in the Space of Generalized Functions,
PhD Thesis, Kazan, 1987.
[14] N. S. Gabbasov, Methods for solving an integral equation of the
third kind with fixed singularities in the kernel, Diff. Equ. 45
(2009), 1370-1378.
DOI: https://doi.org/10.1134/S0012266109090122
[15] N. S. Gabbasov, A special version of the collocation method for
integral equations of the third kind, Diff. Equ. 41 (2005), 1768-1774.
DOI: https://doi.org/10.1007/s10625-006-0013-4
[16] N. S. Gabbassov, Metody resheniya integral’nykh uravnenii
Fredgol’ma v prostranstvakh obobshchennykh funktsii (Methods for
Solving Fredholm Integral Equations in Spaces of Distributions)
(Izd-vo Kazan. Un-ta, Kazan, 2006) [in Russian].
[17] N. Karapetiants and S. Samko, Equations with Involutive
Operators, Birkhauser, Boston-Basel-Berlin, 2001.
DOI: https://doi.org/10.1007/978-1-4612-0183-0
[18] S. Prossdorf, Some Classes of Singular Equations, Mir, Moscow,
1979 [in Russian].
[19] G. R. Bart and R. L. Warnock, Solutions of a nonlinear integral
equation for high energy scattering, III. Analyticity of solutions in
a parameter explored numerically, J. Math. Phys. 13 (1972), 1896-1902.
[20] G. R. Bart, P. W. Johnson and R. L. Warnock, Continuum ambiguity
in the construction of unitary analytic amplitudes from fixed-energy
scattering data, J. Math. Phys. 14 (1973), 1558-1565.
DOI: https://doi.org/10.1063/1.1666226
[21] E. Tompé Weimbapou, Abdourahman, and E. Kengne, On
delta-extension for a noether operator. ISSN 1066-369X, Russian
Mathematics, 2021, Vol. 65, No. 11, pp. 34-45. c Allerton Press, Inc.,
2021. Russian Text c The Author(s), 2021, published in Izvestiya
Vysshikh Uchebnykh Zavedenii. Matematika, 2021, No. 11, pages 40-53.
[22] V. S. Rogozhin, Noether theory of operators, 2nd Edition,
Rostov-na- Donu: Izdat. Rostov Univ. (1982), 99 p.
[23] Abdourahman, Linear integral equation of the third kind with a
singular differential operator in the main part, Ph.D Thesis, Rostov
State University, 142 Pages, (2003) [in Russian].
[24] Abdourahman, Integral equation of the third kind with singularity
in the main part, Abstracts of reports, International conference,
Analytic methods of analysis and differential equations, AMADE,
15-19th of February 2001, Minsk Belarus, Page 13.
[25] Abdourahman, On a linear integral equation of the third kind with
singularity in the main part, Abstract of reports, International
School-seminar in Geometry and analysis dedicated to the 90th year N.
V Efimov. Abrao-Diurso, Rostov State University, 5-11th September
2000, pages 86-87.
[26] R. V. Duduchava, Singular integral equations in the Holder spaces
with weight, I. Holder coefficients, Mathematics Researches, T. V, 2nd
Edition, (1970), pages 104-124.
[27] Z. B. Tsalyuk, Volterra Integral Equations//Itogi Nauki i
Techniki, Mathematical Analysis, V. 15. Moscow: VINITI AN SSSR. P.
131-199.
[28] D. Shulaia, A solution of a linear integral equation of third
kind, Georgian Mathematical Journal 9(1) (2002), 179-196.
DOI: https://doi.org/10.1515/GMJ.2002.179
[29] V. Yurko, Integral transforms connected with differential
operators having singularities inside the interval, Integral
Transforms and Special Functions 5(3-4) (1997), 309-322.
DOI: https://doi.org/10.1080/10652469708819143
[30] V. A. Yurko, On a differential operators of higher order with
singularities inside the interval, Kratkie sochenie, Mathematicheskie
Zamietkie 71(1) (2002), 152-156.
[31] D. Shulaia, Integral equation of the third kind for the case of
piecewise monotone coefficients, Transactions of A. Razmadze
Mathematical Institute 171(3) (2017), 396-410.
DOI: https://doi.org/10.1016/j.trmi.2017.05.002