[1] J. M. Burgers, Mechanical Considerations-Model
System-Phenomenological Theories of Relaxation and Viscosity, First
Report on Viscosity and Plasticity, Editor J. M. Burgers, Nordemann
Publishing Company, New York, 1939.
[2] M. C. Wang and K. Y. Lee, Creep behavior of cement stabilized
soils, Highway Research Record 442 (1973), 727-740.
[3] C. A. Tovar, C. A. Cerdeirina, L. Romani, B. Prieto and J.
Carballo, Viscoelastic behavior of Arzua-Ulloa cheese, Journal of
Texture Studies 34(2) (2003), 115-129.
DOI: https://doi.org/10.1111/j.1745-4603.2003.tb01370.x
[4] R. N. J. Saal and J. W. A. Labout, Rheological Properties of
Asphalts, in: F. R. Eirich (Editor), Rheology Theory and Application,
vol. II, Academic Press, New York, 1958.
[5] A. R. Lee and A. H. D. Markwick, The mechanical properties of
bituminous surfacing materials under constant stress, Journal of the
Society of Chemical Industry 56 (1937), 146-154.
[6] W. R. Peltier, P. Wu and D. A. Yuen, The Viscosities of the Earth
Mantle, in: F. D. Stacey, M. S. Paterson and A. Nicholas (Editor),
Anelasticity in the Earth, American Geophysical Union, Colorado,
1981.
[7] D. A. Yuen and W. R. Peltier, Normal modes of the viscoelastic
earth, Geophysical Journal International 69(2) (1982), 495-526.
DOI: https://doi.org/10.1111/j.1365-246X.1982.tb04962.x
[8] P. N. Chopra, High-temperature transient creep in olivine rocks,
Tectonophysics 279(1-4) (1997), 93-111.
DOI: https://doi.org/10.1016/S0040-1951(97)00134-0
[9] B. H. Tan, I. Jackson and J. D. F. Gerald, High-temperature
viscoelasticity of fine-grained polycrystalline olivine, Physics and
Chemistry of Minerals 28 (2001), 641-664.
DOI: https://doi.org/10.1007/s002690100189
[10] J. M. Krishnan and K. R. Rajagopal, Thermodynamic framework for
the constitutive modelling of asphalt concrete: Theory and
applications, Journal of Materials in Civil Engineering 16(2) (2004),
155-166.
DOI: https://doi.org/10.1061/(ASCE)0899-1561(2004)16:2(155)
[11] P. Ravindran, J. M. Krishnan and K. R. Rajagopal, A note on the
flow of a Burgers’ fluid in an orthogonal rheometer,
International Journal of Engineering Science 42(19-20) (2004),
1973-1985.
DOI: https://doi.org/10.1016/j.ijengsci.2004.07.007
[12] Safia Akram, Asia Anjum, M. Khan and A. Hussain, On
Stokes’ second problem for Burgers’ fluid over a plane
wall, Journal of Applied and Computational Mechanics 7(3) (2021),
1514-1526.
DOI: https://doi.org/10.22055/jacm.2020.35227.2603
[13] C. Fetecau, N. A. Ahammad, D. Vieru and N. A. Shah, Steady-state
solutions for two mixed initial-boundary value problems which describe
isothermal motions of Burgers fluids: Application, Mathematics 10(19)
(2022); Article 3681.
DOI: https://doi.org/10.3390/math10193681
[14] M. Hussain, M. Qayyum and Sidra Afzal, Modelling and analysis of
MHD oscillatory flows of generalized Burgers’ fluid in a porous
medium using Fourier transform, Journal of Mathematics (2022); Article
ID 2373084, 13 pages.
DOI: https://doi.org/10.1155/2022/2373084
[15] C. Fetecau, A. Rauf, T. M. Qureshi and D. Vieru, Steady-state
solutions for MHD motions of Burgers’ fluids through porous
media with differential expressions of shear on boundary and
applications, Mathematics 10(22) (2022); Article 4228.
DOI: https://doi.org/10.3390/math10224228
[16] M. Renardy, Inflow boundary conditions for steady flow of
viscoelastic fluids with differential constitutive laws, Rocky
Mountain Journal of Mathematics 18(2) (1988), 445-454.
https://www.jstor.org/stable/44237133
[17] M. Renardy, Recent advances in the mathematical theory of steady
flow of viscoelastic fluids, Journal of Non-Newtonian Fluid Mechanics
29 (1988), 11-24.
DOI: https://doi.org/10.1016/0377-0257(88)85047-X
[18] C. Fetecau, D. Vieru, A. Rauf and T. M. Qureshi, Steady-state
solutions for some motions of Maxwell fluids with pressure-dependence
of viscosity, Journal of Mathematical Sciences: Advances and
Applications 68 (2021), 1-28.
DOI: http://dx.doi.org/10.18642/jmsaa_7100122224
[19] C. Fetecau and D. Vieru, Analytical solutions for a general mixed
initial-boundary value problem corresponding to hydromagnetic flows of
second grade fluids through porous medium, Journal of Applied
Mathematics and Computations 5(3) (2021) 225-236.
DOI: http://dx.doi.org/10.26855/jamc.2021.09.009
[20] E. S. Baranovskii and M. A. Artemov, Steady flows of second grade
fluids in a channel, Vestnik Sankt-Peterburgskogo Universiteta,
Prikladnaya Matematika, Informatika, Protsessy Upravleniya 13 (2017),
342-353 (in Russian).
DOI: https://doi.org/10.21638/11701/spbu10.2017.401
[21] E. S. Baranovskii and M. A. Artemov, Steady Flows of Second-Grade
Fluids Subject to Stick-Slip Boundary Conditions, In Proceedings of
the 23rd International Conference Engineering Mechanics, Svratka,
Czech Republik 15-18 May, 2017, pp. 110-113.
[22] Maria Javaid, M. Imran, C. Fetecau and D. Vieru, General
solutions for the mixed boundary value problem associated to
hydromagnetic flows of a viscous fluid between symmetrically heated
parallel plates, Thermal Science 24 (2020), 1389-1405.
DOI: https://doi.org/10.2298/TSCI190608384J