[1] S. Abramsky and A. Jung, Domain Theory, in S. Abramsky, D. M.
Gabbay and T. S. E. Maibaum (Editors), Handbook of Logic in Computer
Science, 3, Clarendon Press, 1994, pp. 1-168.
[2] G. Birkhoff, Lattice Theory (3rd Edition), Providence: American
Mathematical Society, Colloquium Publications, 1967.
[3] R. Heckmann, Power Domain Constructions (Potenzbereich –
Konstruktionen), Ph.D. Thesis, Universität des Saarlandes, 1999.
http://rwt.cs.unisb.de/heckmann/diss/diss.html
[4] M. M. Khalaf and M. M. A. Al-Shamiri, Compactly completeness and
finitarily completeness on continuous information system, Asian
Journal of Fuzzy and Applied Mathematics 9(2) (2021), 20-31.
DOI: https://doi.org/10.24203/ajfam.v9i2.6577
[5] K. Larsen and G. Winskel, Using information systems to solve
recursive domain equations effectively, in G. Kahn, D. B. MacQueen and
G. Plotkin (Editors), Semantics of data types, Lecture Notes in
Computer Science 173, Springer-Verlag, Berlin, (1984), 109-129.
DOI: https://doi.org/10.1007/3-540-13346-1_5
[6] S. Lipschutz, Schaum’s Outline of Theory and Problems of
General Topology, New York: McGraw-Hill INT, 1965.
[7] J. Nino-Salcedo, On Continuous Posets and their Applications,
Ph.D. Thesis, Tulane University, 1981.
[8] S. Vickers, Information systems for continuous posets, Theoretical
Computer Science 114(2) (1993), 201-299.
DOI: https://doi.org/10.1016/0304-3975(93)90072-2
[9] P. Waszkiewicz, Quantitative Continuous Domains, Ph.D. Thesis,
Birmingham University, Edgbaston, B15 2TT, Birmingham, UK, 2002.
[10] W. Yao, Quantitative domais via fuzzy sets, part I: Continuity of
fuzzy directed complete posets, Fuzzy Sets and Systems 161(7) (2010),
973-987.
DOI: https://doi.org/10.1016/j.fss.2009.06.018
[11] F. M. Zeyada, A. H. Soliman and N. H. Sayed, Continuity of fuzzy
transitive ordered sets, Journal of Nonlinear Analysis and
Optimization: Theory and Applications 3(2) (2012), 195-200.