References

COMPLETENESS PROPERTIES OF TRANSITIVE BINARY RELATIONAL SETS


[1] S. Abramsky and A. Jung, Domain Theory, in S. Abramsky, D. M. Gabbay and T. S. E. Maibaum (Editors), Handbook of Logic in Computer Science, 3, Clarendon Press, 1994, pp. 1-168.

[2] G. Birkhoff, Lattice Theory (3rd Edition), Providence: American Mathematical Society, Colloquium Publications, 1967.

[3] R. Heckmann, Power Domain Constructions (Potenzbereich – Konstruktionen), Ph.D. Thesis, Universität des Saarlandes, 1999.
http://rwt.cs.unisb.de/heckmann/diss/diss.html

[4] M. M. Khalaf and M. M. A. Al-Shamiri, Compactly completeness and finitarily completeness on continuous information system, Asian Journal of Fuzzy and Applied Mathematics 9(2) (2021), 20-31.
DOI: https://doi.org/10.24203/ajfam.v9i2.6577

[5] K. Larsen and G. Winskel, Using information systems to solve recursive domain equations effectively, in G. Kahn, D. B. MacQueen and G. Plotkin (Editors), Semantics of data types, Lecture Notes in Computer Science 173, Springer-Verlag, Berlin, (1984), 109-129.
DOI: https://doi.org/10.1007/3-540-13346-1_5

[6] S. Lipschutz, Schaum’s Outline of Theory and Problems of General Topology, New York: McGraw-Hill INT, 1965.

[7] J. Nino-Salcedo, On Continuous Posets and their Applications, Ph.D. Thesis, Tulane University, 1981.

[8] S. Vickers, Information systems for continuous posets, Theoretical Computer Science 114(2) (1993), 201-299.
DOI: https://doi.org/10.1016/0304-3975(93)90072-2

[9] P. Waszkiewicz, Quantitative Continuous Domains, Ph.D. Thesis, Birmingham University, Edgbaston, B15 2TT, Birmingham, UK, 2002.

[10] W. Yao, Quantitative domais via fuzzy sets, part I: Continuity of fuzzy directed complete posets, Fuzzy Sets and Systems 161(7) (2010), 973-987.
DOI: https://doi.org/10.1016/j.fss.2009.06.018

[11] F. M. Zeyada, A. H. Soliman and N. H. Sayed, Continuity of fuzzy transitive ordered sets, Journal of Nonlinear Analysis and Optimization: Theory and Applications 3(2) (2012), 195-200.