References

A SURVEY ON RECENT HIGHER ORDER SPLINE TECHNIQUES FOR SOLVING BURGERS EQUATION USING B-SPLINE METHODS AND VARIATION OF B-SPLINE TECHNIQUES


[1] İ. Dağ, D. Irk and B. Saka, A numerical solution of the Burgers’ equation using cubic B-splines, Applied Mathematics and Computation 163(1) (2005), 199-211.
DOI: https://doi.org/10.1016/j.amc.2004.01.028

[2] İ. Dağ, B. Saka and A. Boz, B-spline Galerkin methods for numerical solutions of the Burgers’ equation, Applied Mathematics and Computation 166(3) (2005), 506-522.
DOI: https://doi.org/10.1016/j.amc.2004.06.078

[3] I. Dag, B. Saka and A. Boz, B-spline Galerkin methods for numerical solutions of the Burgers equation, Applied Mathematics and Computation 166(3) (2005), 506-522.
DOI: https://doi.org/10.1016/j.amc.2004.06.078

[4] O. Ersoy, I. Dag and N. Adar, The Exponential Cubic B-spline Algorithm for Burgers’s Equation, arXiv: Numerical Analysis (2016).

[5] C. A. J. Fletcher, Generating exact solutions of the two-dimensional Burgers’ equation, International Journal for Numerical Methods in Fluids 3(3) (1983), 213-216.
DOI: https://doi.org/10.1002/fld.1650030302

[6] T. Geyikli and S. B. Gazi Karakoc, Septic B-spline collocation method for the numerical solution of the modified equal width wave equation, Applied Mathematics 2(6) (2011), 739-749.
DOI: https://doi.org/10.4236/am.2011.26098

[7] K. Kakuda and N. Tosaka, The generalized boundary element approach to Burgers’ equation, International Journal for Numerical Methods in Engineering 29(2) (1990), 245-261.
DOI: https://doi.org/10.1002/nme.1620290203

[8] P. K. Srivastava, Study of differential equations with their polynomial and non-polynomial spline based approximation, Acta Tehnica Corviniensis: Bulletin of Engineering 7(3) (2014), 139-150.

[9] S. Kutluay, A. Esen and I. Dag, Numerical solutions of the Burgers’ equation by the least-squares quadratic B-spline finite element method, Journal of Computational and Applied Mathematics 167(1) (2004), 21-33.
DOI: https://doi.org/10.1016/j.cam.2003.09.043

[10] W. G. Bickley, Piecewise cubic interpolation and two-point boundary problems, Computer Journal 11(2) (1968), 206-208.
DOI: https://doi.org/10.1093/comjnl/11.2.206

[11] W. Liu, A asymptotic behavior of solutions of time-delayed Burgers’ equation, Discrete and Continuous Dynamical Systems, Series B, 2(1) (2002), 47-56.
DOI: https://doi.org/10.3934/dcdsb.2002.2.47

[12] H. Nguyen and J. Reynen, A space time finite element approach to Burgers’ equation, E. Hinton et al. (editors), Numerical Methods for Non-Linear Problems, Volume 3, Pineridge Press, pp. 718-728 (1987).

[13] K. Parcha and N. L. Mihretu, Solutions of seventh order boundary value problems using ninth degree spline functions and comparison with eighth degree spline solutions, Journal of Applied Mathematics and Physics 4(2) (2016), 249-261.
DOI: https://doi.org/10.4236/jamp.2016.42032

[14] P. M. Printer, Splines and Variational Methods, Colorado State University, Wiley Classics Edition Published 57 (1975), 421-421.

[15] M. A. Ramadan, T. S. El-Danaf and F. E. I. Abd Alaal, A numerical solution of the Burgers’ equation using septic B-splines, Chaos, Solitons and Fractals 26(4) (2005), 1249-1258.
DOI: https://doi.org/10.1016/j.chaos.2005.02.019

[16] J. Rashidinia, M. Khazaei and H. Nikmarvani, Spline collocation method for solution of higher order linear boundary value problems, TWMS Journal of Pure and Applied Mathematics 6(1) (2015), 38-47.

[17] H. Bateman, Some recent researches on the motion of fluids, Monthly Weather Review 43(4) (1915), 163-170.
DOI: https://doi.org/10.1175/1520-0493(1915)43<163:SRROTM>2.0.CO;2

[18] J. M. Burger, A mathematical model illustrating the theory of turbulence, Advanced in Applied Mechanic 1 (1948), 171-199.
DOI: https://doi.org/10.1016/S0065-2156(08)70100-5

[19] J. Rashidinia and Sh. Sharifi, Survey of B-spline functions to approximate the solution of mathematical problems, Mathematical Sciences 6 (2012); Article 48.
DOI: https://doi.org/10.1186/2251-7456-6-48

[20] K. R. Raslan, A collocation solution for Burgers equation using quadratic B-spline finite elements, International Journal of Computer Mathematics 80(7) (2003), 931-938.
DOI: https://doi.org/10.1080/0020716031000079554

[21] B. Saka, İ. Dağ and A. Boz, Quintic B-Spline Galerkin Method for Numerical Solutions of the Burgers’ Equation (2004).

[22] T. E. Sayed and A. E. Danaf, Numerical solution of the Korteweg–Vries Burgers equation by quintic spline method, Studia Universitatis Babes-Bolyai Mathematica 47 (2002), 41-55.

[23] M. Shearer and R. Levy, Partial Differential Equations: Introduction to Theory and Applications, Princeton University Press (2015), 175-176.

[24] H. S. Shukla, M. Tamsir, V. K. Srivastava and J. Kumar, Numerical solution of two dimensional coupled viscous Burger equation using modified cubic B-spline differential quadrature method, AIP Advanced 4(11) (2015); Article 117134.
DOI: https://doi.org/10.1063/1.4902507

[25] P. K. Srivastava, Application of higher order splines for boundary value problems, International Journal of Mathematical and Computational Sciences 9(2) (2015), 115-122.
DOI: https://doi.org/10.5281/zenodo.1107165

[26] E. Varoğlu and W. D. L. Finn, Space-time finite elements incorporating characteristics for the Burgers’ equation, International Journal for Numerical Methods in Engineering 16(1) (1980), 171-184.
DOI: https://doi.org/10.1002/nme.1620160112

[27] M. Khazaei and Y. Karamipour, Numerical Solution of The Seventh Order Boundary Value Problems using B-spline Method, arXiv:2109.06030v1 [math.NA], arXiv:2109.06030 [math.NA].

[28] M. A. Khater, Y. M Chu, R. A. M. Attia, M. Inc and D. Lu, On the analytical and numerical solutions in the quantum magnetoplasmas: The atangana conformable derivative (1+3)-ZK equation with power-law nonlinearity, Hindawi, Advances in Mathematical Physics (2020); Article ID 5809289.
DOI: https://doi.org/10.1155/2020/5809289

[29] S. Akter, M. G. Hafez, Yu-Ming Chu and M. D. Hossain, Analytic wave solutions of beta space fractional Burgers equation to study the interactions of multi-shocks in thin viscoelastic tube filled, Alexandria Engineering Journal 60(1) (2021), 877-887.
DOI: https://doi.org/10.1016/j.aej.2020.10.016

[30] H. Ramos, A. Kaur and V. Kanwar, Using a cubic B-spline method in conjunction with a one-step optimized hybrid block approach to solve nonlinear partial differential equations, Computational and Applied Mathematics 41(1) (2022); Article 34.
DOI: https://doi.org/10.1007/s40314-021-01729-7