References

STEADY-STATE SOLUTIONS FOR SOME MOTIONS OF MAXWELL FLUIDS WITH PRESSURE-DEPENDENCE OF VISCOSITY


[1] G. G. Stokes, On the theories of the internal friction of fluids in motion, and of the equilibrium and motion of elastic solids, Transactions of the Cambridge Philosophical Society 8 (1845), 287-319.
DOI: https://doi.org/10.1190/1.9781560801931.ch3e

[2] W. G. Cutler, R. H. McMicke, W. Webb and R. W. Scheissler, Study of the compressions of several high molecular weight hydrocarbons, Journal of Chemical Physics 29(4) (1958), 727-740.
DOI: https://doi.org/10.1063/1.1744583

[3] K. L. Johnson and R. Cameron, Shear behaviour of elastohydrodynamic oil films at high rolling contact pressures, Proceedings of the Institution of Mechanical Engineers 182(1) (1967), 307-330.
DOI: https://doi.org/10.1243/PIME_PROC_1967_182_029_02

[4] K. L. Johnson and J. L. Tewaarwerk, Shear behaviour of elastohydrodynamic oil films, Proceedings of The Royal Society A Mathematical Physical and Engineering Sciences 356(1685) (1977), 215-236.
DOI: https://doi.org/10.1098/rspa.1977.0129

[5] S. Bair and W. O. Winer, The high pressure high shear stress rheology of liquid lubricants, Journal of Tribology 114(1) (1992), 1-9.
DOI: https://doi.org/10.1115/1.2920862

[6] S. Bair, J. Jarzynski and W. O. Winer, The temperature, pressure and time dependence of lubricant viscosity, Tribology International 34(7) (2001), 461-468.
DOI: https://doi.org/10.1016/S0301-679X(01)00042-1

[7] V. Prusa, S. Srinivasan and K. R. Rajagopal, Role of pressure dependent viscosity in measurements with falling cylinder viscometer, International Journal of Non-Linear Mechanics 47(7) (2012), 743-750.
DOI: https://doi.org/10.1016/j.ijnonlinmec.2012.02.001

[8] M. Renardy, Parallel shear flows of fluids with a pressure-dependent viscosity, Journal of Non-Newtonian Fluid Mechanics 114(2-3) (2003), 229-236.
DOI: https://doi.org/10.1016/S0377-0257(03)00154-X

[9] M. M. Denn, Polymer Melt Processing, Cambridge University Press, New York, 2008.

[10] A. Z. Szeri, Fluid Film Lubrication, Cambridge University Press, Cambridge, 1998.

[11] H. H. Cui, Z. Silber-Li and S. N. Zhu, Flow characteristics of liquids in microtubes driven by a high pressure, Physics of Fluids 16(5) (2004), 1803-1810.
DOI: https://doi.org/10.1063/1.1691457

[12] P. W. Bridgman, The Physics of High Pressure, The MacMillan Company, New York, 1931.

[13] D. Dowson and G. R. Higginson, Elasto-hydrodynamic Lubrication: The Fundamentals of Roller and Gear Lubrication, Pergamon, 1966.

[14] K. R. Rajagopal, On implicit constitutive theories for fluids, Journal of Fluid Mechanics 550 (2006), 243-249.
DOI: https://doi.org/10.1017/S0022112005008025

[15] K. R. Rajagopal, Couette flows of fluids with pressure dependent viscosity, International Journal of Applied Mechanics and Engineering 9(3) (2004), 573-585.

[16] K. R. Rajagopal, A semi-inverse problem of flows of fluids with pressure-dependent viscosities, Inverse Problems in Science and Engineering 16(3) (2008), 269-280.
DOI: https://doi.org/10.1080/17415970701529205

[17] V. Prusa, Revisiting stokes first and second problems for fluids with pressure-dependent viscosities, International Journal of Engineering Science 48(12) (2010), 2054-2065.
DOI: https://doi.org/10.1016/j.ijengsci.2010.04.009

[18] C. Fetecau and M. Agop, Exact solutions for oscillating motions of some fluids with power-law dependence of viscosity on the pressure, Annals of the Academy of Romanian: Scientists, Series on Mathematics and its Applications 12(1-2) (2020), 295-311.

[19] C. Fetecau, A. Rauf, T. M. Qureshi and M. Khan, Permanent solutions for some oscillatory motions of fluids with power-law dependence of viscosity on the pressure and shear stress on the boundary, Zeitschrift für Naturforschung A 75(9) (2020), 757-769.
DOI: https://doi.org/10.1515/zna-2020-0135

[20] F. T. Akyildiz and D. Siginer, A note on the steady flow of Newtonian fluids with pressure dependent viscosity in a rectangular duct, International Journal of Engineering Science 104 (2016), 1-4.
DOI: https://doi.org/10.1016/j.ijengsci.2016.04.004

[21] K. D. Housiadas and G. C. Georgiou, Analytical solution of the flow of a Newtonian fluid with pressure-dependent viscosity in a rectangular duct, Applied Mathematics and Computation 322 (2018), 123-128.
DOI: https://doi.org/10.1016/j.amc.2017.11.029

[22] P. Wu and H. Wang, Postglacial isostatic adjustment in a self-gravitating spherical Earth with power-law rheology, Journal of Geodynamics 46(3-5) (2008), 118-130.
DOI: https://doi.org/10.1016/j.jog.2008.03.008

[23] S. Karra, V. Prusa and K. R. Rajagopal, On Maxwell fluids with relaxation time and viscosity depending on the pressure, International Journal of Non-Linear Mechanics 46(6) (2011), 819-827.
DOI: https://doi.org/10.1016/j.ijnonlinmec.2011.02.013

[24] K. D. Housiadas, Internal viscoelastic flows for fluids with exponential type pressure-dependent viscosity and relaxation time, Journal of Rheology 59(3) (2015), 769-791.
DOI: https://doi.org/10.1122/1.4917541

[25] K. D. Housiadas, An exact analytical solution for viscoelastic fluids with pressure-dependent viscosity, Journal of Non-Newtonian Fluid Mechanics 223 (2015), 147-156.
DOI: https://doi.org/10.1016/j.jnnfm.2015.06.004

[26] C. Fetecau and A. Rauf, Permanent solutions for some motions of UCM fluids with power-law dependence of viscosity on the pressure, Studia Universitatis BabeÅŸ-Bolyai Mathematica 66(1) (2021), 197-209.
DOI: https://doi.org/10.24193/subbmath.2021.1.16

[27] C. Fetecau, D. Vieru and A. Zeeshan, Analytical solutions for two mixed initial-boundary value problems corresponding to unsteady motions of Maxwell fluids through a porous plate channel, Mathematical Problems in Engineering (2021); Article ID 5539007, 13 pages
DOI: https://doi.org/10.1155/2021/5539007