[1] G. G. Stokes, On the theories of the internal friction of fluids
in motion, and of the equilibrium and motion of elastic solids,
Transactions of the Cambridge Philosophical Society 8 (1845),
287-319.
DOI: https://doi.org/10.1190/1.9781560801931.ch3e
[2] W. G. Cutler, R. H. McMicke, W. Webb and R. W. Scheissler, Study
of the compressions of several high molecular weight hydrocarbons,
Journal of Chemical Physics 29(4) (1958), 727-740.
DOI: https://doi.org/10.1063/1.1744583
[3] K. L. Johnson and R. Cameron, Shear behaviour of
elastohydrodynamic oil films at high rolling contact pressures,
Proceedings of the Institution of Mechanical Engineers 182(1) (1967),
307-330.
DOI: https://doi.org/10.1243/PIME_PROC_1967_182_029_02
[4] K. L. Johnson and J. L. Tewaarwerk, Shear behaviour of
elastohydrodynamic oil films, Proceedings of The Royal Society A
Mathematical Physical and Engineering Sciences 356(1685) (1977),
215-236.
DOI: https://doi.org/10.1098/rspa.1977.0129
[5] S. Bair and W. O. Winer, The high pressure high shear stress
rheology of liquid lubricants, Journal of Tribology 114(1) (1992),
1-9.
DOI: https://doi.org/10.1115/1.2920862
[6] S. Bair, J. Jarzynski and W. O. Winer, The temperature, pressure
and time dependence of lubricant viscosity, Tribology International
34(7) (2001), 461-468.
DOI: https://doi.org/10.1016/S0301-679X(01)00042-1
[7] V. Prusa, S. Srinivasan and K. R. Rajagopal, Role of pressure
dependent viscosity in measurements with falling cylinder viscometer,
International Journal of Non-Linear Mechanics 47(7) (2012), 743-750.
DOI: https://doi.org/10.1016/j.ijnonlinmec.2012.02.001
[8] M. Renardy, Parallel shear flows of fluids with a
pressure-dependent viscosity, Journal of Non-Newtonian Fluid Mechanics
114(2-3) (2003), 229-236.
DOI: https://doi.org/10.1016/S0377-0257(03)00154-X
[9] M. M. Denn, Polymer Melt Processing, Cambridge University Press,
New York, 2008.
[10] A. Z. Szeri, Fluid Film Lubrication, Cambridge University Press,
Cambridge, 1998.
[11] H. H. Cui, Z. Silber-Li and S. N. Zhu, Flow characteristics of
liquids in microtubes driven by a high pressure, Physics of Fluids
16(5) (2004), 1803-1810.
DOI: https://doi.org/10.1063/1.1691457
[12] P. W. Bridgman, The Physics of High Pressure, The MacMillan
Company, New York, 1931.
[13] D. Dowson and G. R. Higginson, Elasto-hydrodynamic Lubrication:
The Fundamentals of Roller and Gear Lubrication, Pergamon, 1966.
[14] K. R. Rajagopal, On implicit constitutive theories for fluids,
Journal of Fluid Mechanics 550 (2006), 243-249.
DOI: https://doi.org/10.1017/S0022112005008025
[15] K. R. Rajagopal, Couette flows of fluids with pressure dependent
viscosity, International Journal of Applied Mechanics and Engineering
9(3) (2004), 573-585.
[16] K. R. Rajagopal, A semi-inverse problem of flows of fluids with
pressure-dependent viscosities, Inverse Problems in Science and
Engineering 16(3) (2008), 269-280.
DOI: https://doi.org/10.1080/17415970701529205
[17] V. Prusa, Revisiting stokes first and second problems for fluids
with pressure-dependent viscosities, International Journal of
Engineering Science 48(12) (2010), 2054-2065.
DOI: https://doi.org/10.1016/j.ijengsci.2010.04.009
[18] C. Fetecau and M. Agop, Exact solutions for oscillating motions
of some fluids with power-law dependence of viscosity on the pressure,
Annals of the Academy of Romanian: Scientists, Series on Mathematics
and its Applications 12(1-2) (2020), 295-311.
[19] C. Fetecau, A. Rauf, T. M. Qureshi and M. Khan, Permanent
solutions for some oscillatory motions of fluids with power-law
dependence of viscosity on the pressure and shear stress on the
boundary, Zeitschrift für Naturforschung A 75(9) (2020), 757-769.
DOI: https://doi.org/10.1515/zna-2020-0135
[20] F. T. Akyildiz and D. Siginer, A note on the steady flow of
Newtonian fluids with pressure dependent viscosity in a rectangular
duct, International Journal of Engineering Science 104 (2016), 1-4.
DOI: https://doi.org/10.1016/j.ijengsci.2016.04.004
[21] K. D. Housiadas and G. C. Georgiou, Analytical solution of the
flow of a Newtonian fluid with pressure-dependent viscosity in a
rectangular duct, Applied Mathematics and Computation 322 (2018),
123-128.
DOI: https://doi.org/10.1016/j.amc.2017.11.029
[22] P. Wu and H. Wang, Postglacial isostatic adjustment in a
self-gravitating spherical Earth with power-law rheology, Journal of
Geodynamics 46(3-5) (2008), 118-130.
DOI: https://doi.org/10.1016/j.jog.2008.03.008
[23] S. Karra, V. Prusa and K. R. Rajagopal, On Maxwell fluids with
relaxation time and viscosity depending on the pressure, International
Journal of Non-Linear Mechanics 46(6) (2011), 819-827.
DOI: https://doi.org/10.1016/j.ijnonlinmec.2011.02.013
[24] K. D. Housiadas, Internal viscoelastic flows for fluids with
exponential type pressure-dependent viscosity and relaxation time,
Journal of Rheology 59(3) (2015), 769-791.
DOI: https://doi.org/10.1122/1.4917541
[25] K. D. Housiadas, An exact analytical solution for viscoelastic
fluids with pressure-dependent viscosity, Journal of Non-Newtonian
Fluid Mechanics 223 (2015), 147-156.
DOI: https://doi.org/10.1016/j.jnnfm.2015.06.004
[26] C. Fetecau and A. Rauf, Permanent solutions for some motions of
UCM fluids with power-law dependence of viscosity on the pressure,
Studia Universitatis BabeÅŸ-Bolyai Mathematica 66(1) (2021),
197-209.
DOI: https://doi.org/10.24193/subbmath.2021.1.16
[27] C. Fetecau, D. Vieru and A. Zeeshan, Analytical solutions for two
mixed initial-boundary value problems corresponding to unsteady
motions of Maxwell fluids through a porous plate channel, Mathematical
Problems in Engineering (2021); Article ID 5539007, 13 pages
DOI: https://doi.org/10.1155/2021/5539007