References

ON A LOGARITHMIC WEIGHTED POWER DISTRIBUTION: THEORY, MODELLING AND APPLICATIONS


[1] M. V. Aarset, How to identify bathtub hazard rate, IEEE Transactions Reliability 36(1) (1987), 106-108.
DOI: https://doi.org/10.1109/TR.1987.5222310

[2] Ahmed M. T. Abd El-Bar, M. do. C. S. Lima and M. Ahsanullah, Some inferences based on a mixture of power function and continuous logarithmic distribution, Journal of Taibah University for Science 14(1) (2020), 1116-1126.
DOI: https://doi.org/10.1080/16583655.2020.1804140

[3] D. K. Bhaumik, K. Kapur and R. D. Gibbons, Testing parameters of a gamma distribution for small samples, Technometrics 51(3) (2009), 326-334.
DOI: https://doi.org/10.1198/tech.2009.07038

[4] N. Balakrishnan and V. B. Nevzorov, A Primer on Statistical Distributions, John Wiley & Sons, 2004.

[5] C. R. Brito, L. C. Régo, W. R. Oliveira and F. Gomes-Silva, Method for generating distributions and classes of probability distributions: The univariate case, Hacettepe Journal of Mathematics and Statistics 48(3) (2019), 897-930.
DOI: https://doi.org/10.15672/HJMS.2018.619

[6] G. Casella and R. L. Berger, Statistical Inference, Brooks/Cole Publishing Company: Bel Air, CA, USA, 1990.

[7] C. Chesneau, Study of a unit power-logarithmic distribution, Open Journal of Mathematical Sciences 5(1) (2021), 218-235.
DOI: https://doi.org/10.30538/oms2021.0159

[8] C. Chesneau, A note on an extreme left skewed unit distribution: Theory, modelling and data fitting, Open Statistics 2(1) (2021), 1-23.
DOI: https://doi.org/10.1515/stat-2020-0103

[9] C. Chesneau, L. Tomy and J. Gillariose, On a new distribution based on the arccosine function, Arabian Journal of Mathematics (2021), (to appear).
DOI: https://doi.org/10.1007/s40065-021-00337-x

[10] G. M. Cordeiro, R. B. Silva and A. D. C. Nascimento, Recent Advances in Lifetime and Reliability Models, Bentham Books, 2020.
DOI: https://doi.org/10.2174/97816810834521200101

[11] S. T. Dara and M. Ahmad, Recent Advances in Moment Distribution and their Hazard Rates, LAP Lambert Academic Publishing, GmbH, KG, 2012.

[12] M. Denuit, J. Dhaene, M. Goovaerts and R. Kaas, Actuarial Theory for Dependent Risks: Measures, Orders and Models, Jhon Wiley & Sons, Ltd., 2006.

[13] S. Ferrari and F. Cribari-Neto, Beta regression for modelling rates and proportions, Journal of Applied Statistics 31(7) (2004), 799-815.
DOI: https://doi.org/10.1080/0266476042000214501

[14] W. Gilchrist, Statistical Modelling with Quantile Functions, CRC Press, Abingdon, 2000.
DOI: https://doi.org/10.1201/9781420035919

[15] R. E. Glaser, Bathtub and related failure rate characterizations, Journal of the American Statistical Association 75(371) (1980), 667-672.
DOI: https://doi.org/10.2307/2287666

[16] E. Gómez-Déniz, M. A. Sordo and E. Calderín-Ojeda, The logLindley distribution as an alternative to the beta regression model with applications in insurance, Insurance: Mathematics and Economics 54 (2014), 49-57.
DOI: https://doi.org/10.1016/j.insmatheco.2013.10.017

[17] I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and Products, Seventh Edition, Editors A. Jeffrey & D. Zwillinger, Academic Press, Burlington, MA, 2007.
DOI: https://doi.org/10.1016/C2013-0-10754-4

[18] J. R. M. Hosking, L-moments: Analysis and estimation of distributions using linear combinations of order statistics, Journal of the Royal Statistical Society, Series B: Methodological 52(1) (1990), 105-124.
DOI: https://doi.org/10.1111/j.2517-6161.1990.tb01775.x

[19] N. L. Johnson, S. Kotz and N. Balakrishnan, Continuous Univariate Distributions, Volume 1, 2 Edition, John Wiley & Sons, New York, 1994.

[20] C. Kleiber and S. Kotz, Statistical Size Distributions in Economics and Actuarial Sciences, Volume 470, John Wiley & Sons, 2003.

[21] J. P. Klein and M. L. Moeschberger, Survival Analysis: Techniques for Censored and Truncated Data; Springer: Berlin/Heidelberg, Germany, 2006.

[22] S. Kotz, Y. Lumelskii and M. Pensky, The Stress-Strength Model and its Generalizations: Theory and Applications, World Scientific: Singapore, 2003.

[23] P. Kumaraswamy, A generalized probability density function for double-bounded random processes, Journal of Hydrology 46(1-2) (1980), 79-88.
DOI: https://doi.org/10.1016/0022-1694(80)90036-0

[24] K. S. Lomax, Business failures: Another example of the analysis of failure data, Journal of the American Statistical Association 49(268) (1954), 847-852.
DOI: https://doi.org/10.2307/2281544

[25] R. M. Mandouh and M. A.-G. Mohamed, A log-weighted power function distribution and its statistical properties, Journal of Data Sciences 18(2) (2020), 257-278.
DOI: https://doi.org/10.6339/JDS.202004_18(2).0003

[26] N. U. Nair and P. G. Sankaran, Quantile-based reliability analysis, Communications in Statistics: Theory and Methods 38(2) (2009), 222-232.
DOI; https://doi.org/10.1080/03610920802187430

[27] R Core Team, R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria, 2014.
URL http://www.R-project.org/

[28] A. Rényi, On measures of entropy and information, In: Proceedings of the 4th Berkeley Symposium on Mathematical Statistics and Probability, University of California Press, Berkeley 1 (1961), 547- 561.

[29] J. M. Ruiz and J. Navarro, Characterizations based on conditional expectations of the doubled truncated distribution, Annals of the Institute of Statistical Mathematics 48(3) (1996), 563-572.
DOI: https://doi.org/10.1007/BF00050855

[30] M. Q. Shahbaz, M. Ahsanullah, S. Hanif Shahbaz and B. M. Al-Zahrani, Ordered Random Variables: Theory and Applications, Atlantis Press and Springer, France, 2016.
DOI: https://doi.org/10.2991/978-94-6239-225-0

[31] M. N. Shahzad and Z. Asghar, Transmuted power function distribution: A more flexible distribution, Journal of Statistics and Management Systems 19(4) (2016), 519-539.
DOI: https://doi.org/10.1080/09720510.2015.1048096

[32] W. T. Shaw and I. R. Buckley, The alchemy of probability distributions: beyond Gram-Charlier expansions, and a skew-kurtotic-normal distribution from a rank transmutation map, arXiv preprint arXiv:0901.0434, (2009).

[33] C. Tanis, On transmuted power function distribution: Characterization, risk measures, and estimation, Journal of New Theory 34 (2021), 72-81.

[34] C. W. Topp and F. C. Leone, A family of J-shaped frequency functions, Journal of the American Statistical Association 50(269) (1955), 209-219.
DOI: https://doi.org/10.2307/2281107

[35] J. R. van Dorp and S. Kotz, The standard two-sided power distribution and its properties: With applications in financial engineering, The American Statistician 56(2) (2002), 90-99.

[36] A. Zaka, A. S. Akhter and R. Jabeen, A view on characterizations of the J shaped statistical distribution, Indian Journal of Science and Technology 13(32) (2020), 3327-3338.
DOI: https://doi.org/10.17485/IJST/v13i32.353