[1] M. V. Aarset, How to identify bathtub hazard rate, IEEE
Transactions Reliability 36(1) (1987), 106-108.
DOI: https://doi.org/10.1109/TR.1987.5222310
[2] Ahmed M. T. Abd El-Bar, M. do. C. S. Lima and M. Ahsanullah, Some
inferences based on a mixture of power function and continuous
logarithmic distribution, Journal of Taibah University for Science
14(1) (2020), 1116-1126.
DOI: https://doi.org/10.1080/16583655.2020.1804140
[3] D. K. Bhaumik, K. Kapur and R. D. Gibbons, Testing parameters of a
gamma distribution for small samples, Technometrics 51(3) (2009),
326-334.
DOI: https://doi.org/10.1198/tech.2009.07038
[4] N. Balakrishnan and V. B. Nevzorov, A Primer on Statistical
Distributions, John Wiley & Sons, 2004.
[5] C. R. Brito, L. C. Régo, W. R. Oliveira and F. Gomes-Silva,
Method for generating distributions and classes of probability
distributions: The univariate case, Hacettepe Journal of Mathematics
and Statistics 48(3) (2019), 897-930.
DOI: https://doi.org/10.15672/HJMS.2018.619
[6] G. Casella and R. L. Berger, Statistical Inference, Brooks/Cole
Publishing Company: Bel Air, CA, USA, 1990.
[7] C. Chesneau, Study of a unit power-logarithmic distribution, Open
Journal of Mathematical Sciences 5(1) (2021), 218-235.
DOI: https://doi.org/10.30538/oms2021.0159
[8] C. Chesneau, A note on an extreme left skewed unit distribution:
Theory, modelling and data fitting, Open Statistics 2(1) (2021),
1-23.
DOI: https://doi.org/10.1515/stat-2020-0103
[9] C. Chesneau, L. Tomy and J. Gillariose, On a new distribution
based on the arccosine function, Arabian Journal of Mathematics
(2021), (to appear).
DOI: https://doi.org/10.1007/s40065-021-00337-x
[10] G. M. Cordeiro, R. B. Silva and A. D. C. Nascimento, Recent
Advances in Lifetime and Reliability Models, Bentham Books, 2020.
DOI: https://doi.org/10.2174/97816810834521200101
[11] S. T. Dara and M. Ahmad, Recent Advances in Moment Distribution
and their Hazard Rates, LAP Lambert Academic Publishing, GmbH, KG,
2012.
[12] M. Denuit, J. Dhaene, M. Goovaerts and R. Kaas, Actuarial Theory
for Dependent Risks: Measures, Orders and Models, Jhon Wiley & Sons,
Ltd., 2006.
[13] S. Ferrari and F. Cribari-Neto, Beta regression for modelling
rates and proportions, Journal of Applied Statistics 31(7) (2004),
799-815.
DOI: https://doi.org/10.1080/0266476042000214501
[14] W. Gilchrist, Statistical Modelling with Quantile Functions, CRC
Press, Abingdon, 2000.
DOI: https://doi.org/10.1201/9781420035919
[15] R. E. Glaser, Bathtub and related failure rate characterizations,
Journal of the American Statistical Association 75(371) (1980),
667-672.
DOI: https://doi.org/10.2307/2287666
[16] E. Gómez-Déniz, M. A. Sordo and E. CalderÃn-Ojeda, The
logLindley distribution as an alternative to the beta
regression model with applications in insurance, Insurance:
Mathematics and Economics 54 (2014), 49-57.
DOI: https://doi.org/10.1016/j.insmatheco.2013.10.017
[17] I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series,
and Products, Seventh Edition, Editors A. Jeffrey & D. Zwillinger,
Academic Press, Burlington, MA, 2007.
DOI: https://doi.org/10.1016/C2013-0-10754-4
[18] J. R. M. Hosking, L-moments: Analysis and estimation of
distributions using linear combinations of order statistics, Journal
of the Royal Statistical Society, Series B: Methodological 52(1)
(1990), 105-124.
DOI: https://doi.org/10.1111/j.2517-6161.1990.tb01775.x
[19] N. L. Johnson, S. Kotz and N. Balakrishnan, Continuous Univariate
Distributions, Volume 1, 2 Edition, John Wiley & Sons, New York,
1994.
[20] C. Kleiber and S. Kotz, Statistical Size Distributions in
Economics and Actuarial Sciences, Volume 470, John Wiley & Sons,
2003.
[21] J. P. Klein and M. L. Moeschberger, Survival Analysis: Techniques
for Censored and Truncated Data; Springer: Berlin/Heidelberg, Germany,
2006.
[22] S. Kotz, Y. Lumelskii and M. Pensky, The Stress-Strength Model
and its Generalizations: Theory and Applications, World Scientific:
Singapore, 2003.
[23] P. Kumaraswamy, A generalized probability density function for
double-bounded random processes, Journal of Hydrology 46(1-2) (1980),
79-88.
DOI: https://doi.org/10.1016/0022-1694(80)90036-0
[24] K. S. Lomax, Business failures: Another example of the analysis
of failure data, Journal of the American Statistical Association
49(268) (1954), 847-852.
DOI: https://doi.org/10.2307/2281544
[25] R. M. Mandouh and M. A.-G. Mohamed, A log-weighted power function
distribution and its statistical properties, Journal of Data Sciences
18(2) (2020), 257-278.
DOI: https://doi.org/10.6339/JDS.202004_18(2).0003
[26] N. U. Nair and P. G. Sankaran, Quantile-based reliability
analysis, Communications in Statistics: Theory and Methods 38(2)
(2009), 222-232.
DOI; https://doi.org/10.1080/03610920802187430
[27] R Core Team, R: A Language and Environment for Statistical
Computing, R Foundation for Statistical Computing, Vienna, Austria,
2014.
URL http://www.R-project.org/
[28] A. Rényi, On measures of entropy and information, In:
Proceedings of the 4th Berkeley Symposium on Mathematical Statistics
and Probability, University of California Press, Berkeley 1 (1961),
547- 561.
[29] J. M. Ruiz and J. Navarro, Characterizations based on conditional
expectations of the doubled truncated distribution, Annals of the
Institute of Statistical Mathematics 48(3) (1996), 563-572.
DOI: https://doi.org/10.1007/BF00050855
[30] M. Q. Shahbaz, M. Ahsanullah, S. Hanif Shahbaz and B. M.
Al-Zahrani, Ordered Random Variables: Theory and Applications,
Atlantis Press and Springer, France, 2016.
DOI: https://doi.org/10.2991/978-94-6239-225-0
[31] M. N. Shahzad and Z. Asghar, Transmuted power function
distribution: A more flexible distribution, Journal of Statistics and
Management Systems 19(4) (2016), 519-539.
DOI: https://doi.org/10.1080/09720510.2015.1048096
[32] W. T. Shaw and I. R. Buckley, The alchemy of probability
distributions: beyond Gram-Charlier expansions, and a
skew-kurtotic-normal distribution from a rank transmutation map, arXiv
preprint arXiv:0901.0434, (2009).
[33] C. Tanis, On transmuted power function distribution:
Characterization, risk measures, and estimation, Journal of New Theory
34 (2021), 72-81.
[34] C. W. Topp and F. C. Leone, A family of J-shaped frequency
functions, Journal of the American Statistical Association 50(269)
(1955), 209-219.
DOI: https://doi.org/10.2307/2281107
[35] J. R. van Dorp and S. Kotz, The standard two-sided power
distribution and its properties: With applications in financial
engineering, The American Statistician 56(2) (2002), 90-99.
[36] A. Zaka, A. S. Akhter and R. Jabeen, A view on characterizations
of the J shaped statistical distribution, Indian Journal of Science
and Technology 13(32) (2020), 3327-3338.
DOI: https://doi.org/10.17485/IJST/v13i32.353