[1] K. J. Arrow and G. Debreu, Existence of an equilibrium for a
competitive economy, Econometrica: Journal of the Econometric Society
22(3) (1954), 265-290.
DOI: https://doi.org/10.2307/1907353
[2] K. C. Border, Fixed Point Theorems with Applications to Economics
and Game Theory, Cambridge University Press, 1985.
DOI: https://doi.org/10.1017/CBO9780511625756
[3] L. E. J. Brouwer, Ãœber abbildung von mannigfaltigkeiten,
Mathematische Annalen 71(1) (1911), 97-115.
DOI: https://doi.org/10.1007/BF01456931
[4] C. Buxton, Brouwer Fixed-Point Theorem, 2016.
[5] S. CobzaÅŸ, Fixed point theorems in locally convex spaces: The
Schauder mapping method, Fixed Point Theory and Applications 1 (2006);
Article 57950.
DOI: https://doi.org/10.1155/FPTA/2006/57950
[6] S. Eilenberg and D. Montgomery, Fixed point theorems for
multi-valued transformations, American Journal of Mathematics 68(2)
(1946), 214-222.
DOI: https://doi.org/10.2307/2371832
[7] K. Fan, Fixed-point and minimax theorems in locally convex
topological linear spaces, Proceedings of the National Academy of
Sciences of the United States of America 38(2) (1952), 121-126.
DOI: https://doi.org/10.1073/pnas.38.2.121
[8] I. L. Glicksberg, A further generalization of the Kakutani fixed
point theorem, with application to Nash equilibrium points,
Proceedings of the American Mathematical Society 3(1) (1952),
170-174.
DOI: https://doi.org/10.2307/2032478
[9] S. Kakutani, A generalization of Brouwer’s fixed point
theorem, Duke Mathematical Journal 8(3) (1941), 457-459.
DOI: https://doi.org/10.1215/S0012-7094-41-00838-4
[10] R. Kannan, Some results on fixed points, Bulletin Calcutta
Mathematical Society 60 (1968), 71-76.
[11] Z. Lin, Essential components of the set of weakly Pareto-Nash
equilibrium points for multiobjective generalized games in two
different topological spaces, Journal of Optimization Theory and
Applications 124(2) (2005), 387-405.
DOI: https://doi.org/10.1007/s10957-004-0942-0
[12] J. F. Nash, Equilibrium points in n-person games, Proceedings of
the National Academy of Sciences 36(1) (1950), 48-49.
DOI: https://doi.org/10.1073/pnas.36.1.48
[13] J. F. Nash, Non-cooperative Games, Ph.D. Thesis, Mathematics
Department, Princeton University, 1950b.
[14] J. Nash, Non-cooperative games, Annals of Mathematics 54(2)
(1951), 286-295.
DOI: https://doi.org/10.2307/1969529
[15] J. Von Neumann, Zur theorie der gesellschaftsspiele,
Mathematische Annalen 100(1) (1928), 295-320.
DOI: https://doi.org/10.1007/BF01448847
[16] G. Owen, Teoria Jocurilor, BucureÅŸti, Romania: Editura
Tehnică, 1974.
[17] A. Rubinstein, Experience from a course in game theory: Pre- and
postclass problem sets as a didactic device, Games and Economic
Behavior 28(1) (1999), 155-170.
DOI: https://doi.org/10.1006/game.1999.0723
[18] H. Scarf, The approximation of fixed points of a continuous
mapping, SIAM Journal on Applied Mathematics 15(5) (1967),
1328-1343.
DOI: https://doi.org/10.1137/0115116
[19] G. van der Laan, A. J. J. Talman and Z. Yang, Combinatorial
integer labeling theorems on finite sets with applications, Journal of
Optimization Theory and Applications 144(2) (2010), 391-407.
DOI: https://doi.org/10.1007/s10957-009-9603-7
[20] R. V. Vohra, Advanced Mathematical Economics, Routledge, 2004.
DOI: https://doi.org/10.4324/9780203799956
[21] J. Von Neumann, Uber ein okonomisches gleichungssystem und eine
verallgemeinerung des brouwerschen fixpunktsatzes, In Ergebnisse eines
Mathematischen Kolloquiums 8 (1937), 73-83.
[22] J. Von Neumann, O. Morgenstern and H. W. Kuhn, Theory of Games
and Economic Behavior (Commemorative Edition), Princeton University
Press, 2007.
[23] H. Yang and J. Yu, Essential components of the set of weakly
Pareto-Nash equilibrium points, Applied Mathematics Letters 15(5)
(2002), 553-560.
DOI: https://doi.org/10.1016/S0893-9659(02)80006-4
[24] J. Yu and H. Yang, The essential components of the set of
equilibrium points for set-valued maps, Journal of Mathematical
Analysis and Applications 300(2) (2004), 334-342.
DOI: https://doi.org/10.1016/j.jmaa.2004.06.042